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Abstract: Breast Cancer (BC) is a major universal health problem. Early detection and precise diagnosis are vital for enlightening outcomes. 
Artificial Intelligence (AI) technologies can potentially revolutionize the field of BC by providing quantitative representations of medical images to 
assist in segmentation, diagnosis, and prognosis. AI can improve image quality, detect and segment breast lesions, classify cancer and predict its 
behavior, and integrate data from multiple sources to predict clinical outcomes. It can lead to more personalized and effective treatment for BC 
patients. Challenges faced by AI in real-life solicitations include data curation, model interpretability, and run-through guidelines. However, the 
clinical implementation of AI is expected to deliver vital guidance for patient-tailored management. BC is a major global health problem; early 
detection and treatment are crucial for improving outcomes. Imaging detection is a key screening, diagnosis, and treatment effectiveness assessment 
tool. However, the irresistible number of images creates a heavy capacity for radiologists and delays reporting. AI has the potential to revolutionize 
BC imaging by improving efficiency and accuracy. AI can recognize, segment, and diagnose tumor lesions automatically and analyze tumor images 
on a molecular level. It could lead to more personalized treatment strategies. However, AI-assisted imaging diagnosis is still in its early stages of 
development, and more research is needed to validate its clinical effectiveness. Therefore, AI is a promising new technology that has the potential 
to progress the diagnosis and treatment of BC, and AI-assisted imaging diagnosis is a promising new technology for improving the early detection 
and diagnosis of BC. More research is needed to bring this technology to clinical practice. 
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1. INTRODUCTION 

 
Breast Cancer (BC) accounts for over 2.4 million fresh cases 
(11.8%) and 0.7 million fatalities (6.8%) of all cancer cases 
globally. In a large number of nations, it is the most often 
detected cancer, and in 110 of those nations, it is the main 
factor in cancer-related death1. Early identification and precise 
diagnosis of BC are crucial for improved results and to stop 
the spread of the illness. Age, genetics, genes, and 
environmental variables are only a few risk factors involved in 
the pathogenesis of the illness known as BC. BC also shows 
heterogeneity at the molecular and morphological levels2. 
Several treatment strategies are required for people with 
various molecular subtypes to achieve the best results. 
Understanding the basis of BC is essential for accurate 
diagnosis and successful prognosis. Full-spectrum analyses can 
be addressed by non-invasive radiologic imaging, which 
provides promising options. Digital mammography (DMy), 
digital breast tomosynthesis (DBTs), Ultrasound (US), 
magnetic resonance imaging (MRI), nuclear magnetic methods, 
or an amalgam of these, are often utilized modalities3. Early 
recognition and clinical staging of BC have both benefited 
greatly from the use of imaging detections. Nevertheless, 
several challenging concerns have recently gained more 
attention in clinical settings. On the other hand, radiologists 
have a significant burden because of the volume of imaging data 
that is created following the diagnosis of BC4. On the one 
hand, radiologists' ability to make accurate diagnoses is limited 
by pictures of inadequate quality or ambiguous characteristics. 
Demonstrating elusive or complicated disease symptoms may 
need both imaging and clinical data. Computer-aided diagnosis 
(CAD) suggests operative computerized lesion segmentation, 
picture identification, and diagnosis, possibly lowering 
radiologists' labor and increasing diagnostic precision5. The 
therapeutic relevance of CAD in BC has greatly increased due 
to the advancements in CAD, which have led to the 
development of more adaptable and versatile analyses, 
particularly image-based AI approaches. A dependable CAD 
methodology with advanced computer technology is necessary 
to enhance and assure the precision of diagnosis, which 
directly influences the assessment's accuracy6. The prompt 
detection of BC and the fall in death rates among individuals 
have been significantly helped by advancements in medical 
imaging modalities and technology. Current rapid 
developments in radioactive substances and deep learning 
technologies, as well as high-performance techniques for data 
analysis and AI technologies, have exponentially increased the 
creation of new AI-based models of breast images that address 
a wide range of application areas. BC is a complicated and 
ever-changing progression, making cancer management a 
challenging journey with many obstacles along the way 7. 
Advancements in medical imaging technology and progress 
toward a better understanding of BC's intricate biological and 
chemical nature have significantly influenced the substantial 
decrease in BC mortality. In this therapeutic pipeline, the 
process of deciding on each of these tasks is greatly influenced 
by medical imaging. To identify suspicious tumors, gauge the 
likelihood of malignancy, and assess the prognosis for cancer, 
radiologists traditionally use descriptive or partially 
quantitative material visually gleaned from medical pictures8. 
Information that is clinically significant might involve patterns 
of improvement, the existence or inability of necrosis or 
bleeding, the density and size of suspicious tumors, tumor 
border fringe speculation, or the position of the distrustful 
tumor. Making a final diagnosis requires analyzing and 
combining information visually observed from medical imaging, 

which is difficult. Despite being the most widely used imaging 
modality for BC screening, mammography usually performs 
poorly because of its lower sensitivity. The idea of AI, which 
entails teaching computers to execute activities that ordinarily 
entail human intellect, such as decision-making, speech 
recognition, and language translation, has existed since the 
1950s9. It works effectively for processing massive amounts of 
heterogeneous, unstructured data from different imaging 
modalities to create high-dimensional associations.  
 
2. BREAST CANCER IMAGING MODALITIES 

 

BC is evaluated using radiological and unhealthy images, which 
take into account intrinsic abnormality characteristics like 
location, size, and morphology, cancer risk factors like 
malignant or benign, stage, and molecular types, and survival 
outcomes like metastasis, treatment response, and 
recurrence10. The following summary of the most popular 
imaging modalities: Digital mammography (DM) is frequently 
used to check for BC. From the ages of 40 to 75, depending 
on the national/regional screening programs, screening is 
conducted every 1, 2, or 3 years. It has been demonstrated 
that routine breast DM substantially lowers cancer-related 
mortality11-13. In DM, the breast is exposed to X-rays, and the 
radiations are collected by a digital X-ray detector and 
converted into a two-dimensional (2D) digital picture.  
Mammography loses its precision, sensitivity, and reliability 
when breast tissues just vertically separated from one another 
look overlaid. This is especially true for thick breasts. Breast 
screening uses two perspectives of each breast—the cranio-
caudal (CC) view and the medio-lateral oblique (MLO) view—
to address this problem14. It is done by reestablishing a 
pseudo-3D image from multiple predictions, each obtained 
while the X-ray source was situated at a different angle, which 
increases sensitivity and specificity. Breast US is suggested as a 
first-line assessment for young women during pregnancy or 
nursing and is viewed as a supplemental evaluation, particularly 
for women with thick breasts. Breast US imaging can increase 
the global rate of detection by 17% when compared with DM. 
Regardless of breast density, MRI offers the best sensitivity 
among the current modalities for the examination of the 
breast for the diagnosis of occult malignancies15. In high-risk 
individuals, breast MRI (also known as DCE-MRI) is 
increasingly seen as a complement to DM. The increased 
sensitivity can be attributable to improved tissue contrast from 
cancer cell-absorbing contrast agents like gadolinium and 
comprehensive information offered by different scanning 
sequences such as shape, size, and blood perfusion. However, 
breast MRI is unsuitable for universal screening because of its 
high cost, limited specificity, lengthy examination duration, and 
constrained tolerance. Diagnostic approaches in radiation 
therapy includes positron emission tomography (PET) and 
molecular breast imaging (MBI). Breast PET uses an instrument 
adjacent to the breast to assess the absorption of fluorine 18 
(18F) fluorodeoxyglucose (FDG) to identify metabolically active 
cancer cells. They have demonstrated their capacity for 
axillary lymphatic node (ALN) identification, categorization, 
and distant staging in BC16. 
 
3. ULTRASOUND 

 

Another imaging method for detecting BC is breast 
ultrasonography. Because it is non-radioactive and simple to 
use, it is frequently employed in assisted percutaneous biopsy 
and BC diagnosis. Ultrasound is a better alternative to 
mammography for small, non-calcified occult lesions17. There 
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are several types of breast ultrasound, such as automated full-
volume breast scan imaging, ultrasonography, ultrasound light 
scattering tomography, ultrasound elastography, etc., 
alongside traditional breast ultrasound. These ultrasound-
based detections combine several ultrasound contrast agents, 
3D imaging technology, and spectral analysis technology based 
on conventional ultrasound to satisfy various diagnostic needs 
like evaluating the texture of tumors, differentiating between 
benign and malignant tissue and displaying its connection with 
the surrounding tissues18. The success rate of ultrasonography 
in the detection of BC has significantly increased with the 
newest invention of ultrasound elastography, and the semi-
quantitative evaluation of lesion arduousness provides an 
improved distinction between swelling benignity and 
malignancy. In order to determine the condition of axillary 
lymph node metastases in clinical T12 cancer, ultrasound 
elastography, and breast ultrasound imaging characteristics can 
be combined19. The workflow of ultra-sonographers and the 
interpretation of films by ultrasound physicians both suffer 
from considerable subjective biases that affect operator-
dependent imaging modality and comprehensive AI 
identification of ultrasound pictures. Ultrasound image 
classification with AI is less developed than CT and MRI 
because it relies more on exchanging deep learning models 
between AI researchers and ultrasound experts20. It is one 
reason AI identification of ultrasound images lags behind CT 
and MRI. To address this challenge, Singh et al. proposed a new 
breast ultrasound classification method using a contextual 
information-aware, firmly adversarial learning framework21. 
This method can effectively segment breast ultrasound images 
and handle a variety of tumors with different sizes and shapes. 
 

4. MRI FOR BREAST CANCER 

 
Breast MRI is an exceptionally susceptible and reliable imaging 
technique for determining the stage of BC before surgery, and 
the amount of tissue has no bearing on how sensitive it is to 
tumor diagnosis22. When genes are altered in BCs with 
vascular infiltration, this can be used to predict the likelihood 
of tumor vascular infiltration events and to assess the response 
to chemotherapy. MRI can provide information about the 
biological function of tumors. Spectral imaging can identify 
tissue regions' chemical composition for subjective tumor 
diagnosis by detecting metabolites. According to reports, MRI 
may be used to diagnose BC in a variety of ways, such as 
pathologic complete response(PCR) forecasting BC following 
neo-adjuvant treatment23. Contrast-Enhanced Magnetic 
Resonance Imaging (CE-MRI) may offer various structures, 
including tumor morphology, texture, hemodynamics, and 
pharmacokinetics24. Dynamic characteristics are a distinctive 
identification benefit of MRI above the two prior imaging 
exams, as they can aid in recognizing and categorizing tumors 
by demonstrating hemodynamic structures of tumors that are 
entirely distinct from those of normal glands. The viability of 
using DL to recognize breast tumor lesion-containing slides in 
MRI images was proven by Winkler and colleagues. They 
implemented the DL technique interested in the images and 
archiving communication system (ACS) to enhance the clinical 
workflow of viewing breast MRIs so that radiologists could 
rapidly select the desired image rather than scanning the 
imaging stack25. 
 
5. NUCLEAR MEDICINE TECHNIQUES 

 
18F-Fluorodeoxyglucose(FDG) is a nuclear medicine test used 
in some cases of BC26. Diagnoses, staging, evaluation of 

recurring metastases, phenotypic identification, prognosis, and 
evaluation of therapeutic response are all covered by PET/CT 
in the case of BC in FDG. When compared to extra imaging 
tests, PET has the benefit of providing staging data for the 
entire body in a single scan27. Due to the higher glucose 
metabolic background of brain parenchyma, PET/CT is not 
suited for identifying small intracranial metastases, and given 
the high cost, additional research is required to determine 
whether this test is price-effective for identifying early stages 
of BC. The adoption of composite imaging of 18F FDG-PET/CT 
with MRI in BC is encouraged by the greater diagnostic 
accuracy of MRI compared to other imaging tests. PET/MRI 
offers a 90–99% sensitivity for identifying BC and is more 
effective in staging the disease than PET/CT28. PET scans use a 
small amount of radioactive tracer to create images of the 
body's tissues and organs. The tracer is injected into the 
bloodstream and travels to different body parts, where tissues 
absorb. A PET scanner detects the radiation from the tracer 
and creates images showing how much the tracer is in different 
body parts. PET scans can be used to detect cancer, including 
breast cancer29. 
 

6. RADIOMICS IN BREAST CANCER 

 
AI-powered high-throughput picture recognition features, 
filtering using techniques based on the chosen evaluation or 
prediction endpoint events, model development with the 
screened features of images, and model validation with internal 
and external datasets30. Entropy, tumor vascularity, and 
heterogeneity are correlated, and this information may be 
used to distinguish between benign and malignant BCs, 
according to radionics research employing breast MRI scans. 
The predictive molecular markers HER2, progestin receptor, 
and estrogen receptor were among those whose levels and 
statuses could be more clearly distinguished using the model 
created in this study31. A nomograph was created using 
medical characteristics based on radiomic algorithms to 
forecast the possibility of axillary lymph node metastasis and 
complications in people with initial BC. Radiomics examination 
of MRI was also used to forecast axillary lymph node 
metastasis in BC. Despite this study being retrospective, it has 
a substantial degree of MRI scan heterogeneity and a little 
follow-up time, and its results offer important guidance aimed 
at the practice of MRI-based imaging radiomics in the detection 
of BC. To deliver more detailed and customized radiological 
and genetic features, radiogenomics performs the joint 
examination of radiomics and genomics32. As a result, 
precision healthcare and customized treatment are no longer 
restricted to genetic or proteomics research projects that rely 
on tissue or blood samples. By analyzing alterations at the 
cellular level of the illness, radiogenomics research can aid in 
the prediction and early identification of cancer. Due to the 
numerous aspects of genetic testing, for example, DNA 
organizing and RNA sequencing, alongside the various image 
characteristics produced by various imaging exams, there are 
several distinct arrangements for imaging genomics analysis. A 
further benefit of imaging genomics is the ability to resolve 
imaging data of the entire lesion, which is unavailable by 
perforation or biopsy owing to tumor heterogeneity. It allows 
for acquiring complete data at the molecular level of genes 
inside the application. The Finished genetic and medical 
biomarkers for adult cancer have been connected by the 
Cancer Genome Atlas effort33. 
 

7. AI TECHNIQUES 
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The present phase of BC combating and prevention efforts is 
secondary prevention, or improving screening for high-hazard 
groups. Initial detection is also a critical part of BC control 
measures. The most valuable use of AI in BC screening might 
be the effective detection of malignant lesions among the 
enormous volume of photos of healthy individuals, significantly 
lessening the labor of imaging doctors. The establishment of 
computer-aided detection/diagnostic (CADe/CADx) systems 
underpins the establishment of AI-assisted breast imaging 
diagnosis. CAD is a key type of ML that helps radiologists 
detect small tumor lesions that they would have missed by 
fusing math, statistics, processing of images, and computer 
analysis34. Fortunately, its use in healthcare is constrained by 
the high biopsy and false positive rates (FPR) associated with 
CAD detection35. Learning is carried out to improve the 
efficacy of CAD, which covers the duties of clinical data set 
gathering, neural network standardized data set interpreting, 
ML classification algorithm selection, and system-wide 
performance assessment. The visual input data is utilized as an 
example set36 to create a model. Making a DL-based AI 
application tool for BC diagnosis requires establishing a DL 
algorithm that is dependable across users, devices, and 
modalities and amassing a sizeable training dataset of great 
breast inspection photographs. The ability to annotate 
manually depends on the expertise of the imaging professional, 
and the manually drawn lesions serve as guidelines for 
automated segmentation37. On the other hand, small-volume 
lesions or those with masked characteristics might be 
challenging to differentiate from adjacent healthy breast tissue. 
In AI for BC, there are two main forms of ML: regulated 

education and spontaneous learning. This type of education 
identifies natural groups or categories in unlabeled data, 
whereas supervised learning trains models that map 
characteristics to categories using labeled data. Support vector 
machine (SVM), random forest (RF), and k-nearest neighbor 
(kNN) are examples of representative algorithms that are 
often used for medical imaging problems involving classification 
and regression38. These algorithms work fine uniformly with 
little training data. Deep neural networks with many more 
layers are used in deep learning (DL), a subclass of ANN-based 
machine learning, to model complicated functions and identify 
high-level characteristics in data. The primary benefit of DL is 
its capacity to automatically derive rich representative features 
from unprocessed data, allowing it to discover latent semantic 
information about tasks. DL models are also adaptable since 
they can handle massive amounts of unstructured and 
heterogeneous data, learning from multi-modal pictures, 
audio, and text. To produce high-quality pictures for the image 
creation task, the generator and discriminator of the 
generative adversarial network (GAN) are alternately trained 
with various loss terms39. In this scenario, the generator 
generates false data to trick the discriminator, who then tries 
to distinguish between the true data and the false data 
produced by the generator. When the created data is no 
longer distinct, the creator is changed and constructed on 
input from the discriminator from the real data40. There are 
several uses for AI in the field of breast cancer, including 
medication research, tumor screening, diagnosis, staging, and 
therapy (Fig. 01).

 

 
 

Fig: 1 - Artificial Intelligence in clinical settings 

 

8. BREAST IMAGE AUGMENTATION 

 

The quest for improved picture quality is crucial for the clinical 
detection of BC. As a result, much recent research has used 
AI techniques for picture augmentation, including 
enhancement, synthesis, and creation techniques41. Given the 
scarcity of training samples for medical imaging models, AI-
established data augmentation is also required to develop 
strong models. The results of these studies on BC show a 
notable improvement in clinical diagnosis accuracy to a 5% gain 
that can be attributable to US-synthesized. elastography42. 
Decreasing acquisition time, denoising, and contrast 
enhancement are just a few of the approaches under the 
heading of "Image enhancement techniques" that try to 
increase the accuracy of medical pictures. Picture resolution is 
severely compromised to speed up the reconstruction 

process and decrease acquisition time. Scholars used a GAN-
based super-resolution network to produce high-resolution 
DCE-MRI of BC from low-resolution ones in order to tackle 
this problem, which may enable a more precise diagnosis with 
better picture quality43. Physicians may make a correct 
diagnosis with improved visualization, which is made possible 
by AI-based breast image denoising. Numerous networks, 
encompassing DM, DBT, US, MRI, and HP, are being used with 
various modalities. Domain gaps brought on by various 
scanning processes or suppliers threaten the generalizability of 
AI models. In medical settings, combo-mode screening, which 
combines 2D DM and 3D DBT, has been demonstrated to 
boost the specificity of diagnosis44. Dual X-ray exposure, 
however, raises the risk of radiation-induced BC. Creating DM 
from DBT scratch using generative networks is one potential 
remedy. Compared to conventional B-mode US, the latest BC 
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imaging technology, elastography-ultrasound (EUS), offers 
higher sensitivity to soft tissue and tumor depth information. 
To offer data regarding tissue enhancement, DCE-MRI collects 
a sequence of pictures both before and after the injection of a 
contrast agent45. Researchers used GAN-based models to 
create post-contrast pictures from pre-contrast images to 
limit the adverse effects of contrast agents, which achieved 
tissue enhancement and enhanced the diagnostic workflow for 
BC. A considerable quantity of training data is necessary to 
create an AI model effectively. Various dynamic networks have 
been used to add synthetic breast pictures to training samples 
to solve this problem, broadening the data dispersion and 
enhancing the capacity for extrapolation of the network46. Due 
to their ability to produce a variety of realistic pictures, GANs, 
and their variations have shown to be very useful for data 
enrichment. 
 

9. MEDICAL IMAGING CHARACTERISTICS 

AND TUMOR ENVIRONMENT 

RELATIONSHIPS 

 
Discovering the connections between medical image 
characteristics and the tumor microenvironment is a key goal 
of BC research in the field of medical imaging in order to have 
more accurately forecast clinical outcomes. Since hand-
crafting a collection of characteristics is necessary for typical 
CAD schemes, it is crucial to comprehend what descriptors 
correspond with radio mic-based genetic biomarkers 
particular to cancer47. A hypoxic environment develops as 
tumors spread and enlarge due to a reduction in the amount 
of oxygen that is readily accessible due to increased demand. 
The tumor will go into an angiogenic state, which modifies the 
microvasculature in response to the newly hypoxic condition. 
In order to effectively supply the tumor with oxygen and 
nutrients, the tumor will activate angiogenic growth factors 
such as vascular-endothelial-growth-factor (ViEGF) and 
fibroblast-growth-factors (FiGF) 48. Most malignancies are 
characterized by nonhierarchical, immature, and extremely 
absorbent capillaries distinct from normal vasculature. This 
phenomenon is known as angiogenesis. Even while enhanced 
angiogenesis and high MVD have been linked as biomarkers of 
poor prognosis, MVD measurement is vulnerable to inter- and 
intra-reader variability, making it an unreliable and non-
standardized diagnostic49. The creation of a rapid, non-invasive 
biomarker that can distinguish between severely immature 
angiogenic and normal vasculature has been a popular area of 
study over the past ten years. The tumor microenvironment 
may be found and described using DCE-MRI, a non-invasive 
technique. Many research studies have shown the connection 
between DCE-MRI and tumor angiogenesis by correlating 
quantitative and semi-quantitative DCE-MRI-based kinetic 
characteristics with MVD. The contrast agent's escape from 
the tumor is shown by the peak signal enhancement ratio 
(peak SER) and washout fraction (WF), two semi-quantitative 
measures taken from the contrast augmentation curve. As fast 
washout will occur with immature and leaky vessels, these 
measures strongly correspond to a highly angiogenic state50,51. 
It takes a pharmacokinetic analysis with high time resolution 
and frequently inadequate spatial resolution to gather 
quantitative information from DCEMRI. Clinical DCE-MRI 
scans favor spatial firmness over temporal firmness, making it 
challenging to do a completely quantitative analysis. It may be 
possible to distinguish between conventionally rounded benign 
tumors and spiculated malignant tumors using shape-based 
characteristics. Mammography compression makes it 
challenging to obtain these features. Additionally, features may 

be retrieved to quantify the tumor speculations, which will be 
very useful for identifying malignant BCs. 
 

10. BREAST LESION DETECTION AND 

SEGMENTATION 

 

A skilled radiologist reviews screening mammograms, but the 
interpretation procedure could be more varied, drawn out, 
and prone to mistakes. The intricacy of mammography and the 
number of tests each radiologist does might cause them to 
misinterpret the true diagnosis52. Overuse of mammograms 
for BC screening has been studied for a long time, which 
strongly encouraged the development of other medical 
imaging methods such as tumor detection, localization, 
segmentation, and classification. Additionally, locating and 
segmenting the suspicious area of the tumor is a difficult and 
time-consuming job 53. It is clear that a tumor may exist in any 
part of the breast, and a single breast may have several lesion 
occurrences, making it challenging to identify multiple 
worrisome areas and categorize them appropriately. Because 
it is possible for benign and malignancies to coexist on the 
same breast and overlap, this issue needs to be dealt with very 
precisely54. It calls for them to be independently classified and 
contoured (segmented) for the radiologists' benefit. 
Heterogeneous lesions seen in a single mammogram are not 
identified and segregated independently in current computer-
aided diagnostic models. Consequently, multiple detection and 
segmentation of breast lesions might aid radiologists in making 
a precise diagnosis55. AI-powered lesion detection techniques 
are highly accurate and effective and may be divided into two 
categories. The first uses bounding boxes on lesions, such as 
micro-calcification clusters, provided by detection networks 
like RCNN, Fast-RCNN, and Yolov4. Nevertheless, such 
identification techniques must be more accurate and prone to 
making false-positive predictions56. The second method 
produces ROI contours that define lesion borders using 
classification networks with class activation maps (CAMs). A 
revolutionary, completely automated technique is presented 
to make lesion diagnosis easier in dynamic contrast-enhanced 
magnetic resonance mammography (DCE-MRM). The 
approach uses a cellular neural network to identify breast 
areas from pre-contrast pictures, creates normalized 
maximum 12*12 intensity-time ratio (nMITR) maps, and uses 
3D template matching with three layers of cells to find 
lesions57. A radiologist uses DCE-MRM to discover and assess 
lesions based on their morphology, enhancement dynamics, or 
both after initially identifying enhancing areas and marking a 
region of interest (ROI). The radiologist cannot visually review 
all of the captured and generated. Pictures for MRM: this 
assessment procedure takes time and requires skill 58. The last 
diagnosis may need more accuracy and specificity due to the 
absence of a very minor feature. As a result, computerized 
methods that aid radiologists in choosing options are being 
developed. These methods often use intensity differences 
between pre-and post-contrast pictures to extract 
characteristics59. 
 

11. AI IN BREAST PATHOLOGY 

 

Breast pathologists frequently have several interpretations to 
do because of difficult diagnoses and time-consuming, 
repetitive activities, including calculating biomarker levels and 
assessing lymph node metastases. These activities need time 
and effort and are prone to inter-observer variability60. Recent 
AI-integrated digital pathology processing improvements have 
shown intriguing solutions to these problems. Accurate 
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categorization of BC is essential for treatment choices, and 
histopathologic diagnosis of BC forms the cornerstone of 
therapeutic therapy. Recently, scientists created ML/DL 
algorithms to recognize and categorize breast tumors. To 
facilitate the multi-classification of BC histopathologic kinds, 
such as ductal carcinoma, lobular carcinoma, mucinous 
carcinoma, papillary carcinoma, etc., Han et al.14 61 suggested 
a unique DL model. Economically accessible AI systems 
(algorithms) are accessible to identify/screen breast lesions in 
breast core biopsy samples. The GALEN Breast algorithm is 
one illustration. The algorithm is capable of screening the 
entirety of breast core needle biopsy WSIs to generate heat 
maps for various breast lesions, such as invasive carcinoma 
(ductal and lobular), in situ carcinoma (ductal and lobular), and 
atypical hyperplasia (ductal and lobular), as well as benign 
findings, such as sclerosing adenosis, fat necrosis, etc. Since 
lymph node metastases are significantly connected with 
prognosis, accurate identification of axillary lymph node 
metastasis in BC patients is essential for their clinical care. 
Assessment of lymph node metastases requires a lot of time 
and effort. While locating macro-metastasis is simple, finding 
single tumor cells or micro-metastasis may be more difficult. 
According to recent studies, AI algorithms can increase the 
precision and effectiveness of lymph node evaluation. TILs in 
the tumor's microenvironment are linked to improved 
therapeutic response and overall survival in BC, particularly 
triple-negative BC and HER2 breast carcinoma62. TILs are 
becoming more and more common as a BC biomarker. Manual 
evaluation of TILs is personal, has high inter-observer 
fluctuation, and has subpar repeatability. Seeking to produce 
more precise and repeatable outcomes, AI algorithms have 
been created to analyze TILs in light of the increased adoption 
of digital pathology. The degree of lymphocytic infiltrate in 
HER2 breast carcinoma was consequently detected and 
graded in one study using WSIs63. The outcomes 
demonstrated that the architectural set of characteristics 
effectively differentiated samples with high and low 
lymphocytic infiltrate the amount with a precision of 
classification greater than ninety percent64. Adopting AI 
algorithms in breast pathology requires taking into account 
several important issues. The initial one is the volume and 
caliber of training data used to create the AI algorithm. File 
formats for WSIs, scanner quality, and glass slide quality differ 
significantly in terms of stained intensity, coverslip size, tissue 
size, folded tissue, air bubbles, and so on65. To create thorough 
ML/DL models, manual selection of WSIs with artifact-free and 
appropriate quality must be employed during algorithm 
training. Second, before their adoption for usage in therapeutic 
settings, AI algorithms must be validated66. Except for some 
breast biomarker quantification AI algorithms, many of the 
above AI algorithms are still experimental. Recent research 
has shown that AI algorithms may be successfully validated, 
and institutions have begun to use such AI algorithms for 
clinical practice. Thirdly, if using AI algorithms to automate 
normal pathology practice, a digital pathology workflow (digital 
sign-out) is always recommended or required67. Many 
organizations worldwide have adopted whole-sheet imaging 
technology, but only a few pathology labs have a fully digital 
pathology process. 
 

12. PROGNOSIS 

 
To guarantee the best prognosis, the appropriate therapy 
should be administered to the appropriate people based on 
the threat assessment for BC. Considering the intricate nature 
of the etiology and pathophysiology of BC, a patient-tailored 

treatment ought to consider a variety of layers of info from 
radiologic data, pathologic data, genome, epigenome, 
transcriptome, proteome, and more68. Integrating this multi-
omics data with AI technology has been investigated to help 
with accurate cancer prognostic prediction. When extracting 
useful characteristics that might be used in therapeutic 
situations, AI is particularly good at identifying complicated 
picture patterns, creating quantitative feature representations, 
and integrating multi-omics data streams. The process of 
decoding radiologic pictures into quantitative characteristics is 
called AI-based radiomics69. AI-based radiogenomics tries to 
link the genotype and tumor imaging phenotype. The 
likelihood of recurrence is decreased by forecasting lymph 
node (for example, ALN) metastasis, which gives helpful data 
for treatment planning. In multi-modal imaging, AI shows 
potential for determining ALN metastases. To anticipate ALN 
and SLN metastases in multi-modal imaging, AI-based 
radiomics models seem promising70. DCE-MRI was employed 
in various investigations because of its multi-parametric ability 
to represent tumor heterogeneity. For instance, Yu et al. 
retrospectively gathered people from four institutions who 
had DCE-MRI images done before surgery. With radiomics 
and DL approaches recording characteristics for long-term 
monitoring of tumors, AI is being employed to expect 
treatment response (i.e., immunotherapy and targeted flash 
therapy) 71. Radioactivity powered by AI for therapy DCE-MRI 
performed well when combined with clinical data to predict 
PCR, improving accuracy. AI-based radiomics analysis, in turn, 
is widely used to estimate BC patients' overall survival (OS), 
disease-specific survival (DSS), and disease-free survival (DFS) 

72. 
 

13. CHALLENGES AND PROSPECTS 

 

BC is still a very serious illness, and more common. The 
probable mode to lower the disease's death rate is still early 
identification during regular screening checks. The 
effectiveness of the present breast screening program, which 
includes both sensitivity and specificity, must be enhanced. It 
is growing for more challenging and time-consuming for 
medical professionals to process all of the data that is 
accessible, make an accurate diagnosis and develop an 
effective, individualized course of action as a result of the 
growth in the number of breast imaging techniques and the 
abundance of clinical, pathological, and genetic information. AI-
based models for forecasting now have considerably broader 
implications in BC research than only the typical work of 
identifying and classifying worrisome breast lesions in CAD 
schemes73. The use of AI in treating BC has opened the way 
for the development of customized medicine since cancer 
detection and diagnosis are now driven by quantitative data 
about specific individuals rather than general qualitative 
indicators 74. Even though much research has been done on 
creating and testing innovative AI-based models in the lab, only 
some of these studies or prototypes have made their way to 
clinical practice. It might be related to several difficulties or 
problems. Due to inevitable bias and model overfitting, training 
a model with a short dataset frequently has low universality 
and poor performance. The presence of widespread and first-
class picture collections for various application activities is thus 
a significant barrier. Despite several breast image databases, 
including Digital Database for Screening Mammography, 
INbreast, MIAS, and BCDR, being accessible to the public, 
these repositories mostly feature straightforward instances 
and lack complex cases, significantly limiting their variety and 
heterogeneity75. Many of the records mentioned in earlier 
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studies must be updated (e.g., Digital Database for Screening 
Mammography and MIAS used digitized screen-film-based 
mammograms), lacking biopsy-approved ground-truth medical 
images, or both. Efficient and reliable segmentation of breast 
lesions from the variable backdrop tissue is still challenging, 
whether lesion segmentation is carried out automatically or 
semi-automatically using a preliminary seed. AI-based 
software, such as (CAD) systems, has been created to expand 
the breadth of AI treatments in the clinical process76. 
Nevertheless, the manually created features-based 
convolutional CADs have many false-positive discoveries. It is 
encouraging to note that DL-based systems have been created 
with performance superior to traditional CADs and even on 
par with highly skilled radiologists77. Large amounts of high-
quality data pose a significant obstacle to creating automated 
healthcare solutions since human tagging is expensive and 
inefficient. Establishing open-source image libraries through 
cross-institutional data exchange is a successful technique to 
expand the amount of data. However, there is substantial 
picture heterogeneity due to various institutions, scanners, 
acquisition protocols, and post-processing algorithms. Data 
augmentation and DL technologies may improve data quality 
and quantity; via supervised learning, they can reduce the need 
for data annotation; and through transfer learning, they can 
use models already trained on huge datasets. Most AI 
algorithms are designed retrospectively and absent 
prospective validation, which is essential to guarantee the 
model's resilience and generalizability.  
 

14. CONCLUSION 

 
AI-based imaging analysis is crucial for BC prognosis, image 
augmentation, diagnosis, and segmentation. Despite 
challenges, AI can integrate multi-data streams into diagnostic 
systems, accelerating patient-tailored management. Integrating 
AI algorithms into clinical workflows can improve patient 
outcomes and reduce radiologists' workloads. AI-assisted BC 
diagnosis offers a promising model, but supplementary 
optimization and authentication in clinical tribunals are 
needed. A breakthrough in AI-specific databases and health 
insurance could accelerate its development. AI techniques may 
be included in the current clinical workflow to facilitate full-
stack evaluation of BC and improve patient results while 
lessening radiologists' workloads. 
 
15 AUTHORS CONTRIBUTION STATEMENT 

 

Dr. Anand Mohan Jha conceived the study and was responsible 
for the overall direction, analysis, and planning. Dr. Abikesh 
Prasada Kumar Mahapatra Scarried out the implementation.  
Dr. John Abraham Mahmood took the lead in writing the 
manuscript. Gurman Kaur provided critical feedback, 
reviewed, and helped in the final corrections of the 
manuscript. 
 

16 CONFLICT OF INTEREST  

 
Conflict of interest declared none.

 
 
17 REFERENCES 

 

1. Sung H, Ferlay J, Siegel RL, Laversanne M, 
Soerjomataram I, Jemal A et al. Global cancer statistics 
2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. 
CA Cancer J Clin. 2021;71(3):209-49. doi: 
10.3322/caac.21660, PMID 33538338. 

2. Sharma A, Hooda N, Sharma R, Gupta NR. A review of 
environmental pollutants as breast cancer risk factor. 
AIP Conf Proc. 2023 Feb 3;2558(1). doi: 
10.1063/5.0120685. 

3. Irmici G, Della Pepa G, D’Ascoli E, De Berardinis C, 
Giambersio E, Rabiolo L et al. Exploring the potential 
of artificial intelligence in breast ultrasound. Crit Rev 
Oncog™ in Oncogenesis. 2023. doi: 
10.1615/CritRevOncog.2023048873. 

4. Mello-Thoms C, Mello CAB. Clinical applications of 
artificial intelligence in radiology. Br J Radiol. 2023 
Apr;96(1150):20221031. doi: 10.1259/bjr.20221031, 
PMID 37099398. 

5. Silva HECD, Santos GNM, Leite AF, Mesquita CRM, 
Figueiredo PTS, Stefani CM et al. The use of artificial 
intelligence tools in cancer detection compared to the 
traditional diagnostic imaging methods: an overview of 
the systematic reviews. PLOS ONE. 2023 Oct 
5;18(10):e0292063. doi: 
10.1371/journal.pone.0292063, PMID 37796946. 

6. Villa-Camacho JC, Baikpour M, Chou SS. Artificial 
intelligence for breast US. J Breast Imaging. 2023 Jan 
1;5(1):11-20. doi: 10.1093/jbi/wbac077. 

7. Bellini D, Milan M, Bordin A, Rizzi R, Rengo M, Vicini S 
et al. A focus on the synergy of radiomics and RNA 
sequencing in breast cancer. Int J Mol Sci. 2023 Apr 

13;24(8):7214. doi: 10.3390/ijms24087214, PMID 
37108377. 

8. Kjær EKR, Vase CB, Rossing M, Ahlborn LB, Hjalgrim 
LL. Detection of circulating tumor-derived material in 
peripheral blood of pediatric sarcoma patients: A 
systematic review. Transl Oncol. 2023 Aug 
1;34:101690. doi: 10.1016/j.tranon.2023.101690, PMID 
37201250. 

9. Shah N. Artificial intelligence in pharma industry-A 
review. Asian J Pharm (AJP). 2023 Jun 15;17(2). 

10. Moghbel M, Ooi CY, Ismail N, Hau YW, Memari N. A 
review of breast boundary and pectoral muscle 
segmentation methods in computer-aided 
detection/diagnosis of breast mammography. Artif Intell 
Rev. 2020;53(3):1873-918. doi: 10.1007/s10462-019-
09721-8. 

11. Riggio AI, Varley KE, Welm AL. The lingering mysteries 
of metastatic recurrence in breast cancer. Br J Cancer. 
2021;124(1):13-26. doi: 10.1038/s41416-020-01161-4, 
PMID 33239679. 

12. Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy 
SW. Mammography service screening and mortality in 
breast cancer patients: 20-year follow-up before and 
after introduction of screening. Lancet. 
2003;361(9367):1405-10. doi: 10.1016/S0140-
6736(03)13143-1, PMID 12727392. 

13. Feig S. Cost-effectiveness of mammography, MRI, and 
ultrasonography for breast cancer screening. Radiol 
Clin North Am. 2010;48(5):879-91. doi: 
10.1016/j.rcl.2010.06.002, PMID 20868891. 

14. Zhang J, Wu J, Zhou XS, Shi F, Shen D. Recent 
advancements in artificial intelligence for breast cancer: 
image augmentation, segmentation, diagnosis, and 

https://doi.org/10.3322/caac.21660
https://www.ncbi.nlm.nih.gov/pubmed/33538338
https://doi.org/10.1063/5.0120685
https://doi.org/10.1615/CritRevOncog.2023048873
https://doi.org/10.1259/bjr.20221031
https://www.ncbi.nlm.nih.gov/pubmed/37099398
https://doi.org/10.1371/journal.pone.0292063
https://www.ncbi.nlm.nih.gov/pubmed/37796946
https://doi.org/10.1093/jbi/wbac077
https://doi.org/10.3390/ijms24087214
https://www.ncbi.nlm.nih.gov/pubmed/37108377
https://doi.org/10.1016/j.tranon.2023.101690
https://www.ncbi.nlm.nih.gov/pubmed/37201250
https://doi.org/10.1007/s10462-019-09721-8
https://doi.org/10.1007/s10462-019-09721-8
https://doi.org/10.1038/s41416-020-01161-4
https://www.ncbi.nlm.nih.gov/pubmed/33239679
https://doi.org/10.1016/S0140-6736(03)13143-1
https://doi.org/10.1016/S0140-6736(03)13143-1
https://www.ncbi.nlm.nih.gov/pubmed/12727392
https://doi.org/10.1016/j.rcl.2010.06.002
https://www.ncbi.nlm.nih.gov/pubmed/20868891


 

ijtos 2024; doi 10.22376/ijtos.2024.2.1.27-36 

 

34 

 

prognosis approaches. Semin Cancer Biol. 2023 Sep 
12;96:11-25. doi: 10.1016/j.semcancer.2023.09.001, 
PMID 37704183. 

15. Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY. 
Comparison of ultrasound elastography, 
mammography, and sonography in the diagnosis of solid 
breast lesions. J Ultrasound Med. 2007;26(6):807-15. 
doi: 10.7863/jum.2007.26.6.807, PMID 17526612. 

16. van Geel JJL, de Vries EFJ, van Kruchten M, Hospers 
GAP, Glaudemans AWJM, Schröder CP. Molecular 
imaging as biomarker for treatment response and 
outcome in breast cancer. Ther Adv Med Oncol. 2023 
May;15:17588359231170738. doi: 
10.1177/17588359231170738, PMID 37223262. 

17. Dahan M, Cortet M, Lafon C, Padilla F. Combination of 
focused ultrasound, immunotherapy, and 
chemotherapy: new perspectives in breast cancer 
therapy. J Ultrasound Med. 2023 Feb;42(3):559-73. doi: 
10.1002/jum.16053, PMID 35869903. 

18. Jacob G, Jose I, Sujatha S. Breast cancer detection: A 
comparative review on passive and active 
thermography. Infrared Phys Technol. 2023 Sep 
30;134:104932. doi: 10.1016/j.infrared.2023.104932. 

19. Windsor GO, Bai H, Lourenco AP, Jiao Z. Application 
of artificial intelligence in predicting lymph node 
metastasis in breast cancer. Front Radiol. 2023 Feb 
20;3:928639. doi: 10.3389/fradi.2023.928639, PMID 
37492388. 

20. Simmons L, Feng L, Fatemi-Ardekani A, Noseworthy M. 
Breast cancer calcifications and implications in medical 
imaging. Crit Rev™ in Biomedical Engineering. 

21. Singh VK, Abdel-Nasser M, Akram F, Rashwan HA, 
Sarker MMK, Pandey N et al. Breast tumor 
segmentation in ultrasound images using contextual-
information-aware deep adversarial learning 
framework. Expert Syst Appl. 2020;162:113870. doi: 
10.1016/j.eswa.2020.113870. 

22. Muzahir S, Ulaner GA, Schuster DM. Evaluation of 
treatment response in patients with breast cancer. PET 
Clin. 2023 Jun 6;18(4):517-30. doi: 
10.1016/j.cpet.2023.04.007, PMID 37291018. 

23. Lo Gullo RL, Marcus E, Huayanay J, Eskreis-Winkler S, 
Thakur S, Teuwen J et al. Artificial intelligence-
enhanced breast MRI: applications in breast cancer 
primary treatment response assessment and 
prediction. Invest Radiol. 2023 Jul 27:10-97. doi: 
10.1097/RLI.0000000000001010, PMID 37493391. 

24. Zheng D, He X, Jing J. Overview of artificial intelligence 
in breast cancer medical imaging. J Clin Med. 2023 Jan 
4;12(2):419. doi: 10.3390/jcm12020419, PMID 
36675348. 

25. Thakur N, Kumar P, Kumar A. A systematic review of 
machine and deep learning techniques for the 
identification and classification of breast cancer through 
medical image modalities. Multimedia Tool Appl. 2023 
Sep 28:1-94. doi: 10.1007/s11042-023-16634-w. 

26. Pontico M, Conte M, Petronella F, Frantellizzi V, De 
Feo MS, Di Luzio D et al. 18F-fluorodeoxyglucose (18F-
FDG) functionalized gold nanoparticles (GNPs) for 
plasmonic photothermal ablation of cancer: a review. 
Pharmaceutics. 2023 Jan 18;15(2):319. doi: 
10.3390/pharmaceutics15020319, PMID 36839641. 

27. Treglia G, Albano D, Dondi F, Bertagna F, Gheysens O. 
A role of FDG PET/CT for Response Assessment in 
Large Vessel Disease? Nucl Med. 2023 Jan 1 (Vol. 53, 

No. 1, pp. 78-85);53(1):78-85. doi: 
10.1053/j.semnuclmed.2022.08.002, PMID 36075772. 

28. Di Micco R, Santurro L, Gasparri ML, Zuber V, 
Cisternino G, Baleri S; et al. PET/MRI for Staging the 
Axilla in Breast Cancer: Current Evidence and the 
Rationale for SNB vs. PET/MRI. 

29. Sutherland DEK, Azad AA, Murphy DG, Eapen RS, 
Kostos L, Hofman MS. Role of FDG PET/CT in 
management of patients with prostate cancer. Semin 
Nucl Med. 2023 Jul 1. doi: 
10.1053/j.semnuclmed.2023.06.005, PMID 37400321. 

30. Moore NS, McWilliam A, Aneja S. Bladder cancer 
radiation oncology of the future: prognostic modelling, 
radiomics, and treatment planning with artificial 
intelligence. Radiat Oncol. 2023 Jan 1 (Vol. 33, No. 1, 
pp. 70-75);33(1):70-5. doi: 
10.1016/j.semradonc.2022.10.009, PMID 36517196. 

31. Corredor G, Bharadwaj S, Pathak T, Viswanathan VS, 
Toro P, Madabhushi A. A review of AI-based radiomics 
and computational pathology approaches in triple-
negative breast cancer: current applications and 
perspectives. Clin Breast Cancer. 2023 Jun 21. doi: 
10.1016/j.clbc.2023.06.004. 

32. Romeo V, Moy L, Pinker K. AI-enhanced PET and MR 
imaging for patients with breast cancer. PET Clin. 2023 
Jun 17;18(4):567-75. doi: 10.1016/j.cpet.2023.05.002. 

33. Srivastava R. Applications of artificial intelligence 
multiomics in precision oncology. J Cancer Res Clin 
Oncol. 2023 Jan;149(1):503-10. doi: 10.1007/s00432-
022-04161-4, PMID 35796775. 

34. Mohammadi S, Livani MA. A Review of CAD systems 
for Breast Mass Detection in Mammography Based on 
Deep Learning. 

35. Din M, Agarwal S, Grzeda M, Wood DA, Modat M, 
Booth TC. Detection of cerebral aneurysms using 
artificial intelligence: a systematic review and meta-
analysis. J NeuroIntervent Surg. 2023 Mar 1;15(3):262-
71. doi: 10.1136/jnis-2022-019456, PMID 36375834. 

36. Hinton GE, Osindero S, Teh YW. A fast learning 
algorithm for deep belief nets. Neural Comput. 
2006;18(7):1527-54. doi: 
10.1162/neco.2006.18.7.1527, PMID 16764513. 

37. Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu 
E; et al. Robust breast cancer detection in 
mammography and digital breast tomosynthesis using 
an annotation-efficient deep learning approach. Nat. 

38. Mhaske H, Patil M, Thote J, Shendage A, Tallapalli R. A 
review on melanoma cancer detection using artificial 
intelligence. IJRASET;11(2):1335-9. doi: 
10.22214/ijraset.2023.49231. 

39. Morrison TM, Stitzel JD, Levine SM Modeling and 
Simulation in Biomedical Engineering: Regulatory 
Science and Innovation for Advancing Public Health. 
Ann Biomed Eng. 2023;51(1):1-5. doi: 10.1007/s10439-
022-03116-7. PMID 36562847. 

40. Hong TS, Tomé WA, Harari PM. Heterogeneity in head 
and neck IMRT target design and clinical practice. 
Radiother Oncol. 2012;103(1):92-8. doi: 
10.1016/j.radonc.2012.02.010, PMID 22405806. 

41. Poplack SP, Park EY, Ferrara KW. Optical breast 
imaging: a review of physical principles, technologies, 
and clinical applications. J Breast Imaging. 2023 Sep 
1;5(5):520-37. doi: 10.1093/jbi/wbad057. 

42. Yao Z, Luo T, Dong Y, Jia X, Deng Y, Wu G, et al. 
Virtual elastography ultrasound via generative 
adversarial network for breast cancer diagnosis. Nat 

https://doi.org/10.1016/j.semcancer.2023.09.001
https://www.ncbi.nlm.nih.gov/pubmed/37704183
https://doi.org/10.7863/jum.2007.26.6.807
https://www.ncbi.nlm.nih.gov/pubmed/17526612
https://doi.org/10.1177/17588359231170738
https://www.ncbi.nlm.nih.gov/pubmed/37223262
https://doi.org/10.1002/jum.16053
https://www.ncbi.nlm.nih.gov/pubmed/35869903
https://doi.org/10.1016/j.infrared.2023.104932
https://doi.org/10.3389/fradi.2023.928639
https://www.ncbi.nlm.nih.gov/pubmed/37492388
https://doi.org/10.1016/j.eswa.2020.113870
https://doi.org/10.1016/j.cpet.2023.04.007
https://www.ncbi.nlm.nih.gov/pubmed/37291018
https://doi.org/10.1097/RLI.0000000000001010
https://www.ncbi.nlm.nih.gov/pubmed/37493391
https://doi.org/10.3390/jcm12020419
https://www.ncbi.nlm.nih.gov/pubmed/36675348
https://doi.org/10.1007/s11042-023-16634-w
https://doi.org/10.3390/pharmaceutics15020319
https://www.ncbi.nlm.nih.gov/pubmed/36839641
https://doi.org/10.1053/j.semnuclmed.2022.08.002
https://www.ncbi.nlm.nih.gov/pubmed/36075772
https://doi.org/10.1053/j.semnuclmed.2023.06.005
https://www.ncbi.nlm.nih.gov/pubmed/37400321
https://doi.org/10.1016/j.semradonc.2022.10.009
https://www.ncbi.nlm.nih.gov/pubmed/36517196
https://doi.org/10.1016/j.clbc.2023.06.004
https://doi.org/10.1016/j.cpet.2023.05.002
https://doi.org/10.1007/s00432-022-04161-4
https://doi.org/10.1007/s00432-022-04161-4
https://www.ncbi.nlm.nih.gov/pubmed/35796775
https://doi.org/10.1136/jnis-2022-019456
https://www.ncbi.nlm.nih.gov/pubmed/36375834
https://doi.org/10.1162/neco.2006.18.7.1527
https://www.ncbi.nlm.nih.gov/pubmed/16764513
https://doi.org/10.22214/ijraset.2023.49231
https://doi.org/10.1007/s10439-022-03116-7
https://doi.org/10.1007/s10439-022-03116-7
https://www.ncbi.nlm.nih.gov/pubmed/36562847
https://doi.org/10.1016/j.radonc.2012.02.010
https://www.ncbi.nlm.nih.gov/pubmed/22405806
https://doi.org/10.1093/jbi/wbad057


 

ijtos 2024; doi 10.22376/ijtos.2024.2.1.27-36 

 

35 

 

Commun. 2023;14(1):788. doi: 10.1038/s41467-023-
36102-1, PMID 36774357. 

43. Jiang G, He Z, Zhou Y, Wei J, Xu Y, Zeng H et al. Multi-
scale cascaded networks for the synthesis of a 
mammogram to decrease intensity distortion and 
increase model-based perceptual similarity. Med Phys. 
2023;50(2):837-53. doi: 10.1002/mp.16007, PMID 
36196045. 

44. Jiang G, Wei J, Xu Y, He Z, Zeng H, Wu J et al. Synthesis 
of mammogram from digital breast tomosynthesis using 
deep convolutional neural network with gradient 
guided cGANs. IEEE Trans Med Imaging. 
2021;40(8):2080-91. doi: 10.1109/TMI.2021.3071544, 
PMID 33826513. 

45. Avtanski D, Hadzi-Petrushev N, Josifovska S, Mladenov 
M, Reddy V. Emerging technologies in adipose tissue 
research. Adipocyte. 2023 Dec 31;12(1):2248673. doi: 
10.1080/21623945.2023.2248673, PMID 37599422. 

46. Oza P, Sharma P, Patel S, Adedoyin F, Bruno A. Image 
augmentation techniques for mammogram analysis. J 
Imaging. 2022;8(5). doi: 10.3390/jimaging8050141, 
PMID 35621905. 

47. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, 
Morganti AG, et al. Radiomics: the facts and the 
challenges of image analysis. Eur Radiol Exp. 
2018;2(1):36. doi: 10.1186/s41747-018-0068-z, PMID 
30426318. 

48. Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in 
breast cancer progression, diagnosis, and treatment. J 
Cancer. 2020;11(15):4474-94. doi: 10.7150/jca.44313, 
PMID 32489466. 

49. Schneider BP, Miller KD. Angiogenesis of breast cancer. 
J Clin Oncol. 2005;23(8):1782-90. doi: 
10.1200/JCO.2005.12.017, PMID 15755986. 

50. Kim SH, Lee HS, Kang BJ, Song BJ, Kim HB, Lee H, et 
al. Dynamic contrast enhanced MRI perfusion 
parameters as imaging biomarkers of angiogenesis. 
PLOS ONE. 2016;11(12):e0168632. doi: 
10.1371/journal.pone.0168632, PMID 28036342. 

51. Mori N, Abe H, Mugikura S, Takasawa C, Sato S, 
Miyashita M, et al. Ultrafast dynamic contrast-enhanced 
breast MRI: kinetic curve assessment using empirical 
mathematical model validated with histological 
microvessel density. Acad Radiol (2019) 26(7):e141–
e9. doi: 10.1016/j.acra.2018.08.016 

52. Makhtar M, Yang L, Neagu D, Ridley M. Optimisation 
of classifier ensemble for predictive toxicology 
applications Proc 14th Int. Conf. Model Simulation, 
UKSim 2012. Vol. 2012; 2012. p. 236-41. doi: 
10.1109/UKSim.2012.41. 

53. Yang D, Wang Y, Jiao Z. Asymmetry analysis with 
sparse autoencoder in mammography; 2016. doi: 
10.1145/3007669.3007712. 

54. Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. 
Detecting and classifying lesions in mammograms with 
Deep Learning. Sci Rep. 2018;8(1):4165. doi: 
10.1038/s41598-018-22437-z, PMID 29545529. 

55. Yurdusev AA, Adem K, Hekim M. Detection and 
classification of microcalcifications in mammograms 
images using difference filter and Yolov4 deep learning 
model. Biomed Signal Process Control. 
2023;80:104360. doi: 10.1016/j.bspc.2022.104360. 

56. Mota AM, Clarkson MJ, Almeida P, Matela N. Detection 
of microcalcifications in digital breast tomosynthesis 
using faster R-CNN and 3D volume rendering. In: 
Proceedings of the 15th international joint conference 

on biomedical engineering system and technologies 
(Bioimaging). Vol. 2; 2022. p. 80-9. doi: 
10.5220/0010938800003123. 

57. Li Y, He Z, Ma X, Zeng W, Liu J, Xu W, et al. 
Architectural distortion detection based on superior–
inferior directional context and anatomic prior 
knowledge in digital breast tomosynthesis. Med Phys. 
2022;49(6):3749-68. doi: 10.1002/mp.15631, PMID 
35338787. 

58. Li Y, He Z, Pan J, Zeng W, Liu J, Zeng Z, et al. Atypical 
architectural distortion detection in digital breast 
tomosynthesis: a computer-aided detection model with 
adaptive receptive field. Phys Med Biol. 2023;68(4). doi: 
10.1088/1361-6560/acaba7, PMID 36595312. 

59. Li Y, He Z, Ma X, Zeng W, Liu J, Xu W, et al. 
Computer-aided detection for architectural distortion: 
a comparison of digital breast tomosynthesis and digital 
mammography. J Med Imaging. 2022;12033:231-8. doi: 
10.1117/12.2611287. 

60. Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S. Breast cancer 
multi-classification from histopathological images with 
structured deep learning model. Sci Rep. 
2017;7(1):4172. doi: 10.1038/s41598-017-04075-z, 
PMID 28646155. 

61. Busby D, Grauer R, Pandav K, Khosla A, Jain P, Menon 
M et al. Applications of artificial intelligence in prostate 
cancer histopathology. Urol Oncol. 2023 Jan 11. doi: 
10.1016/j.urolonc.2022.12.002, PMID 36639335. 

62. Tran J, Thaper A, Lopetegui-Lia N, Ali A. Locoregional 
recurrence in triple negative breast cancer: past, 
present, and future. Expert Rev Anticancer Ther. 2023 
Oct 3(just-accepted);23(10):1085-93. doi: 
10.1080/14737140.2023.2262760, PMID 37750222. 

63. Fatima GN, Fatma H, Saraf SK. Vaccines in breast 
cancer: challenges and breakthroughs. Diagnostics 
(Basel). 2023 Jun 26;13(13):2175. doi: 
10.3390/diagnostics13132175, PMID 37443570. 

64. Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, 
Nekljudova V, Schrader I, et al. Prospective validation 
of immunological infiltrate for prediction of response 
to neoadjuvant chemotherapy in HER2-negative breast 
cancer–a substudy of the neoadjuvant GeparQuinto 
trial. PLOS ONE. 2013;8(12):e79775. doi: 
10.1371/journal.pone.0079775, PMID 24312450. 

65. Ono M, Tsuda H, Shimizu C, Yamamoto S, Shibata T, 
Yamamoto H, et al. Tumor-infiltrating lymphocytes are 
correlated with response to neoadjuvant 
chemotherapy in triple-negative breast cancer. Breast 
Cancer Res Treat. 2012;132(3):793-805. doi: 
10.1007/s10549-011-1554-7, PMID 21562709. 

66. Savas P, Teo ZL, Lefevre C, Flensburg C, Caramia F, 
Alsop K, et al. The subclonal architecture of metastatic 
breast cancer: results from a prospective community-
based rapid autopsy program ”Cascade”. PLOS Med. 
2016;13(12):e1002204. doi: 
10.1371/journal.pmed.1002204, PMID 28027312. 

67. Maley CC, Koelble K, Natrajan R, Aktipis A, Yuan Y. 
An ecological measure of immune-cancer colocalization 
as a prognostic factor for breast cancer. Breast Cancer 
Res. 2015;17(1):131. doi: 10.1186/s13058-015-0638-4, 
PMID 26395345. 

68. Peck RW. The right dose for every patient: a key step 
for precision medicine. Nat Rev Drug Discov. 
2016;15(3):145-6. doi: 10.1038/nrd.2015.22, PMID 
26669674. 

https://doi.org/10.1038/s41467-023-36102-1
https://doi.org/10.1038/s41467-023-36102-1
https://www.ncbi.nlm.nih.gov/pubmed/36774357
https://doi.org/10.1002/mp.16007
https://www.ncbi.nlm.nih.gov/pubmed/36196045
https://doi.org/10.1109/TMI.2021.3071544
https://www.ncbi.nlm.nih.gov/pubmed/33826513
https://doi.org/10.1080/21623945.2023.2248673
https://www.ncbi.nlm.nih.gov/pubmed/37599422
https://doi.org/10.3390/jimaging8050141
https://www.ncbi.nlm.nih.gov/pubmed/35621905
https://doi.org/10.1186/s41747-018-0068-z
https://www.ncbi.nlm.nih.gov/pubmed/30426318
https://doi.org/10.7150/jca.44313
https://www.ncbi.nlm.nih.gov/pubmed/32489466
https://doi.org/10.1200/jco.2005.12.017
https://www.ncbi.nlm.nih.gov/pubmed/15755986
https://doi.org/10.1371/journal.pone.0168632
https://www.ncbi.nlm.nih.gov/pubmed/28036342
https://doi.org/10.1016/j.acra.2018.08.016
https://doi.org/10.1109/UKSim.2012.41
https://doi.org/10.1145/3007669.3007712
https://doi.org/10.1038/s41598-018-22437-z
https://www.ncbi.nlm.nih.gov/pubmed/29545529
https://doi.org/10.1016/j.bspc.2022.104360
https://doi.org/10.5220/0010938800003123
https://doi.org/10.1002/mp.15631
https://www.ncbi.nlm.nih.gov/pubmed/35338787
https://doi.org/10.1088/1361-6560/acaba7
https://www.ncbi.nlm.nih.gov/pubmed/36595312
https://doi.org/10.1117/12.2611287
https://doi.org/10.1038/s41598-017-04075-z
https://www.ncbi.nlm.nih.gov/pubmed/28646155
https://doi.org/10.1016/j.urolonc.2022.12.002
https://www.ncbi.nlm.nih.gov/pubmed/36639335
https://doi.org/10.1080/14737140.2023.2262760
https://www.ncbi.nlm.nih.gov/pubmed/37750222
https://doi.org/10.3390/diagnostics13132175
https://www.ncbi.nlm.nih.gov/pubmed/37443570
https://doi.org/10.1371/journal.pone.0079775
https://www.ncbi.nlm.nih.gov/pubmed/24312450
https://doi.org/10.1007/s10549-011-1554-7
https://www.ncbi.nlm.nih.gov/pubmed/21562709
https://doi.org/10.1371/journal.pmed.1002204
https://www.ncbi.nlm.nih.gov/pubmed/28027312
https://doi.org/10.1186/s13058-015-0638-4
https://www.ncbi.nlm.nih.gov/pubmed/26395345
https://doi.org/10.1038/nrd.2015.22
https://www.ncbi.nlm.nih.gov/pubmed/26669674


 

ijtos 2024; doi 10.22376/ijtos.2024.2.1.27-36 

 

36 

 

69. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, 
Grossmann P, Carvalho S, et al. Decoding tumour 
phenotype by noninvasive imaging using a quantitative 
radiomics approach. Nat Commun. 2014;5:4006. doi: 
10.1038/ncomms5006, PMID 24892406. 

70. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong 
EEC, Van Timmeren J, et al. Radiomics: the bridge 
between medical imaging and personalized medicine. 
Nat Rev Clin Oncol. 2017;14(12):749-62. doi: 
10.1038/nrclinonc.2017.141, PMID 28975929. 

71. Polevoy GG, Kumar DS, Daripelli S, Prasanna M. Flash 
therapy for cancer: A potentially new radiotherapy 
methodology. Cureus. Oct 13, 2023;15(10):e46928. 
doi: 10.7759/cureus.46928. 

72. Park H, Lim Y, Ko ES, Cho HH, Lee JE, Han BK et al. 
Radiomics signature on magnetic resonance imaging: 
association with disease-free survival in patients with 
invasive breast cancer. Clin Cancer Res. 
2018;24(19):4705-14. doi: 10.1158/1078-0432.CCR-
17-3783, PMID 29914892. 

73. Lehman CD, Wellman RD, Buist DS, Kerlikowske K, 
Tosteson AN, Miglioretti DL, et al. Diagnostic accuracy 
of digital screening mammography with and without 

computer-aided detection. JAMA Intern Med. 
2015;175(11):1828-37. doi: 
10.1001/jamainternmed.2015.5231, PMID 26414882. 

74. Giger ML, Karssemeijer N, Schnabel JA. Breast image 
analysis for risk assessment, detection, diagnosis, and 
treatment of cancer. Annu Rev Biomed Eng. 
2013;15:327-57. doi: 10.1146/annurev-bioeng-071812-
152416, PMID 23683087. 

75. Antropova N, Huynh BQ, Giger ML. A deep feature 
fusion methodology for breast cancer diagnosis 
demonstrated on three imaging modality datasets. Med 
Phys. 2017;44(10):5162-71. doi: 10.1002/mp.12453, 
PMID 28681390. 

76. Conant EF, Toledano AY, Periaswamy S, Fotin SV, Go 
J, Boatsman JE et al. Improving Accuracy and Efficiency 
with Concurrent Use of Artificial Intelligence for Digital 
Breast Tomosynthesis. Radiol Artif Intell. 
2019;1(4):e180096. doi: 10.1148/ryai.2019180096, 
PMID 32076660. 

77. Maghsoudi OH, Gastounioti A, Scott C, Pantalone L, 
Wu F-F, Cohen EA et al. Deep-LIBRA: an 
artificialintelligence method for robust quantification of 
breast density with independent.

 

https://doi.org/10.1038/ncomms5006
https://www.ncbi.nlm.nih.gov/pubmed/24892406
https://doi.org/10.1038/nrclinonc.2017.141
https://www.ncbi.nlm.nih.gov/pubmed/28975929
https://doi.org/10.7759/cureus.46928
https://doi.org/10.1158/1078-0432.CCR-17-3783
https://doi.org/10.1158/1078-0432.CCR-17-3783
https://www.ncbi.nlm.nih.gov/pubmed/29914892
https://doi.org/10.1001/jamainternmed.2015.5231
https://www.ncbi.nlm.nih.gov/pubmed/26414882
https://doi.org/10.1146/annurev-bioeng-071812-152416
https://doi.org/10.1146/annurev-bioeng-071812-152416
https://www.ncbi.nlm.nih.gov/pubmed/23683087
https://doi.org/10.1002/mp.12453
https://www.ncbi.nlm.nih.gov/pubmed/28681390
https://doi.org/10.1148/ryai.2019180096
https://www.ncbi.nlm.nih.gov/pubmed/32076660



