Understanding The Influence of Tumour Microenvironment Variability On Therapeutic Effectiveness

Authors

  • Somenath Ghosh Assistant Professor and Head, Rajendra Post-Graduate College, Jai Prakash University, Bihar, India
  • Devika S Kumar Jnr. Research Officer, Panimalar Medical College Hospital and Research Institute, Varadharajapuram, Poonamallee, Chennai- 600123
  • Ratna Kumari Nitta Associate Professor, Shadan Institute of Medical Sciences, Hyderabad
  • Nilima Gajbhiye Associate Professor Department of Life Science Ramnarain Ruia Autonomous College Matunga,Mumbai-19.
  • M. Helan Soundra Rani Assistant Professor, Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore - 06

DOI:

https://doi.org/10.22376/ijtos.2024.2.1.46-58

Keywords:

Tumour Vascularity, Tumour Hypoxia, pH in the tumour, Fibroblasts, Nanoparticle.

Abstract

Cancer immunotherapy has proven effective in treating malignant diseases, but only a small percentage of patients experience completeand durable responses to current treatments. This highlights the need for more effective immunotherapies, combination treatments, andpredictive biomarkers. The molecular properties of a tumor, intratumor heterogeneity, and the tumor immune microenvironment are key targetsfor precision cancer medicine. Humanized mice that support the engraftment of patient-derived tumors and recapitulate the human tumorimmune microenvironment of patients represent a promising preclinical model for addressing fundamental questions in precision immuno-oncology and cancer immunotherapy. The microenvironmental physiology of tumors is unique from normal tissues, characterized by oxygendepletion, glucose and energy deprivation, high lactate levels, and extracellular acidosis. Hypoxia and other hostile microenvironmental parameterscan confer resistance to irradiation, leading to treatment failure. Pretreatment assessment of critical microenvironmental parameters is neededto select patients who could benefit from special treatment approaches, such as hypoxia-targeting therapy. Acquired resistance to varioustherapeutic interventions is a hallmark of cancer, and the tumor microenvironment (TME) plays a crucial role in cancer progression, particularlytherapeutic resistance. Targeting the TME as an essential strategy to overcome cancer resistance and improve therapeutic outcomes throughprecise intervention is highly desired. Cell stem cells (CSCs) play a pivotal role in tumorigenesis, tumor progression, and metastasis. Theinflammatory microenvironment is an essential component of the tumor microenvironment, and understanding the key factors that exertimportant actions in the tumor process would be important to improve clinical outcomes.

References

Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel CI et al. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol. 2022 Oct 6;12:1005069. doi: 10.3389/fonc.2022.1005069, PMID 36276147.

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022 Jan 1;12(1):31-46. doi: 10.1158/2159-8290.CD-21-1059, PMID 35022204.

Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC Med. 2015;13:45. doi: 10.1186/s12916-015-0278-7, PMID 25857315.

Zou Z, Lin H, Li M, Lin B. Tumor− associated macrophage polarization in the inflammatory tumor microenvironment. Front Oncol. 2023 Feb 2;13:1103149. doi: 10.3389/fonc.2023.1103149, PMID 36816959.

Lodewijk I, Nunes SP, Henrique R, Jerónimo C, Dueñas M, Paramio JM. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin Epigenetics. 2021 Dec;13(1):63. doi: 10.1186/s13148-021-01046-0, PMID 33761971.

Mao X, Xu J, Wang W, Liang C, Hua J, Liu J et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021 Dec;20(1):131. doi: 10.1186/s12943-021-01428-1, PMID 34635121.

Celià-Terrassa T, Jolly MK. Cancer stem cells and epithelial-to-mesenchymal transition in cancer metastasis. Cold Spring Harb Perspect Med. 2020 Jul 1;10(7):a036905. doi: 10.1101/cshperspect.a036905, PMID 31570380.

Markopoulos GS, Roupakia E, Marcu KB, Kolettas E. Epigenetic regulation of inflammatory cytokine-induced epithelial-to-mesenchymal cell transition and cancer stem cell generation. Cells. 2019 Sep 25;8(10):1143. doi: 10.3390/cells8101143, PMID 31557902.

Chan TS, Shaked Y, Tsai KK. Targeting the interplay between cancer fibroblasts, mesenchymal stem cells, and cancer stem cells in desmoplastic cancers. Front Oncol. 2019 Jul 31;9:688. doi: 10.3389/fonc.2019.00688, PMID 31417869.

Badr CE, Silver DJ, Siebzehnrubl FA, Deleyrolle LP. Metabolic heterogeneity and adaptability in brain tumors. Cell Mol Life Sci. 2020 Dec;77(24):5101-19. doi: 10.1007/s00018-020-03569-w, PMID 32506168.

Bernabeu MO, Köry J, Grogan JA, Markelc B, Beardo A, d’Avezac M et al. Abnormal morphology biases hematocrit distribution in tumor vasculature and contributes to heterogeneity in tissue oxygenation. Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):27811-9. doi: 10.1073/pnas.2007770117, PMID 33109723.

Vaupel P. Oxygen supply to malignant tumors. InTumor blood circulation 2020 Apr 15 (pp. 143-68). CRC Press.

Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F et al. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol. 2022 Aug 5;928:175087. doi: 10.1016/j.ejphar.2022.175087, PMID 35679891.

Hegde PS, Jubb AM, Chen D, Li NF, Meng YG, Bernaards C, et al. Predictive impact of circulating vascular endothelial growth factor in four phase III trials evaluating bevacizumab. Clin Cancer Res. 2013;19(4):929-37. doi: 10.1158/1078-0432.CCR-12-2535, PMID 23169435.

Yao W, Li Y, Ding G. Interstitial fluid flow: the mechanical environment of cells and foundation of meridians. Evidence-Based Complementary and Alternative Medicine. 2012 Oct;2012.

Seynhaeve ALB, Amin M, Haemmerich D, Van Rhoon GC, Ten Hagen TLM. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv Drug Deliv Rev. 2020 Jan 1;163-164:125-44. doi: 10.1016/j.addr.2020.02.004, PMID 32092379.

Vanshylla K, Held K, Eser TM, Gruell H, Jain K, Weiland D et al. A novel humanized mouse model to study mucosal HIV-1 transmission and prevention. bioRxiv. 2020 Aug 31:2020-08.

De La Rochere P, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E. Humanized mice for the study of immuno- oncology. Trends Immunol. 2018;39(9):748-63. doi: 10.1016/j.it.2018.07.001, PMID 30077656.

Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the tumor microenvironment and cancer immunotherapy in next-generation humanized mice. Cancers. 2023 May 30;15(11):2989. doi: 10.3390/cancers15112989, PMID 37296949.

Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. 2019;20(2):273-86. doi: 10.1093/biostatistics/kxx069, PMID 29394327.

Lazzari L, Corti G, Picco G, Isella C, Montone M, Arcella P et al. Patient-derived xenografts and matched cell lines identify pharmacogenomic vulnerabilities in colorectal cancer. Clin Cancer Res. 2019 Oct 15;25(20):6243-59. doi: 10.1158/1078-0432.CCR-18-3440, PMID 31375513.

Rückert F, Aust D, Böhme I, Werner K, Brandt A, Diamandis EP; et al. Five primary human pancreatic adenocarcinoma cell lines established by the outgrowth method. J Surg Res. 2012;172(1):29-39. doi: 10.1016/j.jss.2011.04.021, PMID 21683373.

Song Y, Rongvaux A, Taylor A, Jiang T, Tebaldi T, Balasubramanian K; et al. A highly efficient and faithful mds patient-derived xenotransplantation model for pre-clinical studies. Nat Commun. 2019;10(1):366. doi: 10.1038/s41467-018-08166-x, PMID 30664659.

Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F et al. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol. 2023;20(3):192-206. doi: 10.1038/s41571-022-00721-2, PMID 36635480.

Wang Y, Liu S, Yang Z, Algazi AP, Lomeli SH, Wang Y; et al. Anti-Pd-1/L1 lead-in before Mapk inhibitor combination maximizes antitumor immunity and efficacy. Cancer Cell. 2021;39(10):1375-1387.e6. doi: 10.1016/j.ccell.2021.07.023, PMID 34416167.

Prasher P, Sharma M, Mudila H. Optimization of physicochemical properties of polymeric nanoparticles for targeting solid tumors. In: Inpolymeric nanoparticles for the treatment of solid tumors. Cham: Springer International Publishing; 2022 Nov 15. p. 103-25. doi: 10.1007/978-3-031-14848-4_4.

Bouleftour W, Rowinski E, Louati S, Sotton S, Wozny AS, Moreno-Acosta P et al. A review of the role of hypoxia in radioresistance in cancer therapy. Med Sci Monit. 2021;27:e934116. doi: 10.12659/MSM.934116, PMID 34728593.

Farhat E, Weber JM. Hypometabolic responses to chronic hypoxia: a potential role for membrane lipids. Metabolites. 2021 Jul 31;11(8):503. doi: 10.3390/metabo11080503, PMID 34436444.

Thews O, Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 2019 Jun 15;38(1-2):113-29. doi: 10.1007/s10555-018-09777-y, PMID 30607627.

Ma Z, Wang LZ, Cheng JT, Lam WST, Ma X, Xiang X et al. Targeting hypoxia-inducible factor-1-mediated metastasis for cancer therapy. Antioxid Redox Signal. 2021 Jun 20;34(18):1484-97. doi: 10.1089/ars.2019.7935, PMID 33198508.

Martino MM, Briquez PS, Güç E, Tortelli F, Kilarski WW, Metzger S, et al. Growth factors engineered for super-affinity to the extracellular matrix enhance tissue healing. Science. 2014;343(6173):885-8. doi: 10.1126/science.1247663, PMID 24558160.

Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992-1009. doi: 10.1016/j.cell.2011.11.016, PMID 22118458.

Popova NV, Jücker M. The functional role of extracellular matrix proteins in cancer. Cancers. 2022 Jan 4;14(1):238. doi: 10.3390/cancers14010238, PMID 35008401.

Becceneri AB, Fuzer AM, Popolin CP, Cazal CM, Domingues VC, Fernandes JB et al. Acetylation of cedrelone increases its cytotoxic activity and reverts the malignant phenotype of breast cancer cells in 3D culture. Chem Biol Interact. 2020 Jan 25;316:108920. doi: 10.1016/j.cbi.2019.108920, PMID 31857088.

Sun Y. Translational horizons in the tumor microenvironment: harnessing breakthroughs and targeting cures. Med Res Rev. 2015;35(2):408-36. doi: 10.1002/med.21338, PMID 25588753.

Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214(3):357-67. doi: 10.1002/path.2278, PMID 18044827.

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-64. doi: 10.1038/nrc3239, PMID 22437870.

Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells. 2020 Feb 27;9(3):561. doi: 10.3390/cells9030561, PMID 32121014.

Hossain F, Al-Khami AA, Wyczechowska D, Hernandez C, Zheng L, Reiss K et al. Inhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapies. Cancer Immunol Res. 2015 Nov 1;3(11):1236-47. doi: 10.1158/2326-6066.CIR-15-0036, PMID 26025381.

Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348(6230):56-61. doi: 10.1126/science.aaa8172, PMID 25838373.

Zhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol. 2016;17(1):95-103. doi: 10.1038/ni.3313, PMID 26523864.

Simons M, Raposo G. Exosomes – vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009;21(4):575-81. doi: 10.1016/j.ceb.2009.03.007, PMID 19442504.

Schageman J, Zeringer E, Li M, Barta T, Lea K, Gu J, et al. The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed Res Int. 2013;2013:253957. doi: 10.1155/2013/253957, PMID 24205503.

Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883-91. doi: 10.1038/nm.2753, PMID 22635005.

Aung T, Chapuy B, Vogel D, Wenzel D, Oppermann M, Lahmann M, et al. Exosomal evasion of humoral immunotherapy in aggressive B-cell lymphoma modulated by ATP-binding cassette transporter A3. Proc Natl Acad Sci U S A. 2011;108(37):15336-41. doi: 10.1073/pnas.1102855108, PMID 21873242.

Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR, Chiu E, et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell. 2012;151(7):1542-56. doi: 10.1016/j.cell.2012.11.024, PMID 23260141.

Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 2013a;13(11):759-71. doi: 10.1038/nrc3611, PMID 24154716.

Czapla J, Matuszczak S, Kulik K, Wiśniewska E, Pilny E, Jarosz-Biej M et al. The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Res Ther. 2019;10(1):235. doi: 10.1186/s13287-019-1331-9. PMID 31383013.

Condamine T, Gabrilovich DI. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 2011;32(1):19-25. doi: 10.1016/j.it.2010.10.002, PMID 21067974.

Cui TX, Kryczek I, Zhao L, Zhao E, Kuick R, Roh MH, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity. 2013;39(3):611-21. doi: 10.1016/j.immuni.2013.08.025, PMID 24012420.

Chen Y, Song Y, Du W, Gong L, Chang H, Zou Z. Tumor-associated macrophages: an accomplice in solid tumor progression. J Biomed Sci. 2019 Dec;26(1):78. doi: 10.1186/s12929-019-0568-z, PMID 31629410.

Comito G, Ippolito L, Chiarugi P, Cirri P. Nutritional exchanges within tumor microenvironment: impact for cancer aggressiveness. Front Oncol. 2020 Mar 24;10:396. doi: 10.3389/fonc.2020.00396, PMID 32266157.

Tian F, Wang S, Shi K, Zhong X, Gu Y, Fan Y et al. Dual‐depletion of intratumoral lactate and ATP with radicals generation for cascade metabolic‐chemodynamic therapy. Adv Sci (Weinh). 2021 Dec;8(24):e2102595. doi: 10.1002/advs.202102595, PMID 34716681.

Lazzari G, Silvano G. From anemia to erythropoietin resistance in head and neck squamous cell carcinoma treatment: a carousel driven by hypoxia. Onco Targets Ther. 2020 Jan 29;13:841-51. doi: 10.2147/OTT.S242263, PMID 32099388.

Vaupel P, Piazena H, Notter M, Thomsen AR, Grosu AL, Scholkmann F et al. From localized mild hyperthermia to improved tumor oxygenation: physiological mechanisms critically involved in oncologic thermo-radio-immunotherapy. Cancers. 2023 Feb 22;15(5):1394. doi: 10.3390/cancers15051394, PMID 36900190.

Denaro N, Merlano MC, Lo Nigro C. Further understanding of the immune microenvironment in head and neck squamous cell carcinoma: implications for prognosis. Cancer Manag Res. 2021 May 17;13:3973-80. doi: 10.2147/CMAR.S277907, PMID 34040438.

Feichtinger RG, Lang R. Targeting L-lactate metabolism to overcome resistance to immune therapy of melanoma and other tumor entities. J Oncol. 2019 Oct;2019:2084195. doi: 10.1155/2019/2084195, PMID 31781212.

Harada H, Hiraoka M. Hypoxia-inducible factor 1 in tumor radioresistance. Curr Signal Transduct Ther. 2010;5(3):188-96. doi: 10.2174/157436210791920229.

Rani V, Prabhu A. Combining angiogenesis inhibitors with radiation: advances and challenges in cancer treatment. Curr Pharm Des. 2021 Feb 1;27(7):919-31. doi: 10.2174/1381612826666201002145454, PMID 33006535.

Amestoy F, Roubaud G, Antoine M, Fonteyne V, Baumann BC, Christodouleas J et al. Review of hypo-fractionated radiotherapy for localized muscle invasive bladder cancer. Crit Rev Oncol Hematol. 2019 Oct 1;142:76-85. doi: 10.1016/j.critrevonc.2019.06.010, PMID 31377435.

Xia D, Hang D, Li Y, Jiang W, Zhu J, Ding Y et al.. Au. Au-hemoglobin loaded platelet alleviating tumor Hypoxia and enhancing the radiotherapy effect with low-dose X-ray. ACS Nano. 2020 Oct 27;14(11):15654-68. doi: 10.1021/acsnano.0c06541, PMID 33108152.

Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and cancer: local and systemic MEChA- nisms. Annu Rev Med. 2015;66:297-309. doi: 10.1146/annurev-med-050913-022228, PMID 25587653.

Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res. 2013;19(22):6074-83. doi: 10.1158/1078-0432.CCR-12-2603, PMID 23958744.

Rosen ED, Spiegelman BM. What we talk about when we talk about fat. Cell. 2014;156(1-2):20-44. doi: 10.1016/j.cell.2013.12.012, PMID 24439368.

Seo BR, Bhardwaj P, Choi S, Gonzalez J, Andresen Eguiluz RC, Wang K, et al. Obesity- dependent changes in interstitial ECM mechanics promote breast tumorigenesis. Sci Transl Med. 2015;7(301):301ra130. doi: 10.1126/scitranslmed.3010467, PMID 26290412.

Creighton CJ, Sada YH, Zhang Y, Tsimelzon A, Wong H, Dave B, et al. A gene transcription signature of obesity in breast cancer. Breast Cancer Res Treat. 2012;132(3):993-1000. doi: 10.1007/s10549-011-1595-y, PMID 21750966.

Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19(11):1423-37. doi: 10.1038/nm.3394, PMID 24202395.

Erez N, Truitt M, Olson P, Arron ST, Hanahan D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell. 2010;17(2):135-47. doi: 10.1016/j.ccr.2009.12.041, PMID 20138012.

Räsänen K, Vaheri A. Activation of fibroblasts in cancer stroma. Exp Cell Res. 2010;316(17):2713-22. doi: 10.1016/j.yexcr.2010.04.032, PMID 20451516.

Asiedu MK, Ingle JN, Behrens MD, Radisky DC, Knutson KL. TGF{beta}/TNF {alpha}-Mediated epithelial-mesenchymal transition generates breast cancer stem cells with a Claudin-low phenotype. Cancer Res. 2011;71(13):4707-19. doi: 10.1158/0008-5472.CAN-10-4554.

Durymanov MO, Rosenkranz AA, Sobolev AS. Current approaches for improving intratumoral accumulation and distribution of nanomedicines. Theranostics. 2015;5(9):1007-20. doi: 10.7150/thno.11742, PMID 26155316.

Stylianopoulos T, Jain RK. Combining two strategies to improve perfusion and drug delivery in solid tumors. Proc Natl Acad Sci U S A. 2013;110(46):18632-7. doi: 10.1073/pnas.1318415110, PMID 24167277.

Geretti E, Leonard SC, Dumont N, Lee H, Zheng J, De Souza R et al. Cyclophosphamide-Mediated Tumor priming for enhanced delivery and antitumor activity of HER2-targeted liposomal doxorubicin (MM-302). Mol Cancer Ther. 2015;14(9):2060-71. doi: 10.1158/1535-7163.MCT-15-0314, PMID 26162690.

Kirui DK, Celia C, Molinaro R, Bansal SS, Cosco D, Fresta M et al. Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response. Adv Healthc Mater. 2015;4(7):1092-103. doi: 10.1002/adhm.201400738, PMID 25721343.

Den RB, Yousefi K, Trabulsi EJ, Abdollah F, Choeurng V, Feng FY, et al. Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol. 2015;33(8):944-51. doi: 10.1200/JCO.2014.59.0026, PMID 25667284.

Sonkin D, Hassan M, Murphy DJ, Tatarinova TV. Tumor suppressors statusin cancer cell line Encyclopedia. Mol Oncol. 2013;7(4):791-8. doi: 10.1016/j.molonc.2013.04.001, PMID 23639312.

Published

05-01-2024

How to Cite

Ghosh, S., D. S Kumar, R. K. Nitta, N. Gajbhiye, and M. H. S. Rani. “Understanding The Influence of Tumour Microenvironment Variability On Therapeutic Effectiveness”. International Journal of Trends in OncoScience, vol. 2, no. 1, Jan. 2024, pp. 46-58, doi:10.22376/ijtos.2024.2.1.46-58.

Issue

Section

Review Articles