New Developments in Cancer Treatment Using miRNA Manipulation

Oncology-miRNA

Authors

  • Kiruthika Balasubramanian Secretary, New Jersey academy of Science, Kean University, NJ Center for Science & Technology,1075 Morris Ave, Union, NJ 07083

Keywords:

miRNA, biogenesis, micro RNA Dysregulation, Gene Amplification, Cancer Stem Cells

Abstract

MicroRNAs (miRNAs) constitute a subclass of short non-coding RNA used throughout cells to control gene expression. Usually, 22 nucleotides long, just one miRNA can control the transcription of many genes. The previous ten years have observed new prospects for diagnosing and treatment advancement due to studying miRNA biology about cancer. While miRNAs are crucial in phenomena such as genomic instability, aberrant transcriptional control, altered epigenetic regulation, and deficiencies in the biogenesis devices, microRNA dysregulation is frequently linked to cancer. Whenever changed, microRNAs can control oncogenes or tumor suppressor genes, which can influence the emergence of tumors. More research is fundamental to confirm the viability of such approaches via means of miRNA, and its assessment has increased avenues for using miRNAs as possible biological cancer markers and treatment objectives. Our review concentrates on how miRNAs control tumor expansion and the possible uses of miRNA regulation in cancer treatment. MiRNAs can be utilized as powerful therapeutic agents due to their propensity to focus on multiple oncogenes and tumor suppressors. Furthermore, miRNA profiling studies provide new details regarding the molecular mechanisms of cancer and could be an early detection tool for cancer. miRNAs are being investigated for their potential to reduce drug resistance and toxicity and improve the efficiency of existing cancer treatments. Thus miRNA-based strategies provide the potential to aim specific cancer cells, making them potentially valuable for personalized medicine approaches. Our review focuses on the regulatory mechanisms of miRNA, biogenesis, biosynthesis, Gene amplification, Cancer Biomarkers, and cancer stem cells.

References

Massoud SMA, Agwa SHA, Gomaa AA, Sayed ARM, Hamdy SM. Novel micro non-coding RNAs (miRNA-221 and miRNA-197) as biomarkers for acute myocardial infarction diagnosis. Biochem Lett. 2022 Dec 1;18(1):103-18. doi: 10.21608/blj.2022.277168.

Dinesh H, Jayaraman M. Role of microRNAs in the progression and metastasis of gastric cancer. J App Biol Biotech. 2022 Jun 1;10(4):1-8. doi 10.7324/JABB.2022.100401.

Mirzaei H, Rahimian N, Mirzaei HR, Nahand JS, Hamblin MR. MicroRNAs in non-malignant diseases. In: InExosomes and MicroRNAs in biomedical science. Berlin: Springer International Publishing; 2022. p. 41-68. doi 10.1007/978-3-031-79177-2_3.

Davuluri KS, Chauhan DS. microRNAs associated with the pathogenesis and their role in regulating various signaling pathways during Mycobacterium tuberculosis infection. Front Cell Infect Microbiol. 2022;12:1009901. doi: 10.3389/fcimb.2022.1009901, PMID 36389170.

Shafi I, Gani M, Shafi S, Hassan T, Mantoo MA The potential role of long non-coding RNAs and micro RNAs in insects: from junk to luxury. ejmbs. doi 10.54672/ejmbs.2022.6.

Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology." Biotechnol Bioeng. 2023 Apr;120(4):932-52. doi: 10.1002/bit.28309, PMID 36527224.

Shapiro D, Massopust R, Taetzsch T, Valdez G. Argonaute 2 is lost from neuromuscular junctions affected with amyotrophic lateral sclerosis in SOD1G93A mice. Sci Rep. 2022 Mar 17;12(1):4630. doi: 10.1038/s41598-022-08455-y, PMID 35301367.

Mauro M, Berretta M, Palermo G, Cavalieri V, La Rocca G. The multiplicity of Argonaute complexes in mammalian cells. J Pharmacol Exp Ther. 2023 Jan 1;384(1):1-9. doi: 10.1124/jpeg.122.001158, PMID 35667689.

Singh SK, Singh R. Nanotherapy: targeting the tumor microenvironment. Nat Rev Cancer. 2022 May;22(5):258-. doi: 10.1038/s41568-022-00461-6, PMID 35236941.

Takasugi M, Yoshida Y, Hara E, Ohtani N. The role of cellular senescence and SASP in the tumor microenvironment. FEBS Journal. 2023 Mar;290(5):1348-61. doi: 10.1111/febs.16381, PMID 35106956.

Mortazavie F, Taheri S, Tandel P, Zare F, Tamaddon G. The effect of ganoderic Acid A on miR-17-5p and miR-181b expression level and apoptosis induction in human leukemia Nalm-6 cells. Iran J Pediatr Hematol Oncol. 2022 Jul 13. doi: 10.18502/ijpho.v12i3.10058.

Braga TV, Evangelista FCG, Santiago MG, Ferrão ALM, Almeida TD, Barbosa BL et al. Evaluating miR-15a, miR-16-1, ZAP-70, Ang-2, and Bcl-2 as potential prognostic biomarkers in chronic lymphocytic leukemia. Braz J Pharm Sci. 2022 Jun 10;58. doi: 10.1590/s2175-97902022e19332.

Doosti Z, Ebrahimi SO, Ghahfarokhi MS, Reiisi S. Synergistic effects of miR-143 with miR-99a inhibited cell proliferation and induced apoptosis in breast cancer.

Vishnubalaji R, Shaath H, Al-Alwan M, Abdelalim EM, Alajez NM. Reciprocal interplays between microRNAs and pluripotency transcription factors dictate stemness features in human cancers. Semin Cancer Biol. 2022 Oct 29;87:1-16. doi: 10.1016/j.semcancer.2022.10.007, PMID 36354097.

Stillson NJ, Anderson KE, Reich NO. In silico study of selective inhibition mechanism of S-adenosyl-L-methionine analogs for human DNA methyltransferase 3A. Comput Biol Chem. 2023 Feb 1;102:107796. doi: 10.1016/j.compbiolchem.2022.107796, PMID 36495748.

Pidíková P, Chovancová B, Mravec B, Herichová I. The 24-h pattern of dgcr8, drosha, and dicer expression in the rat suprachiasmatic nuclei and peripheral tissues and its modulation by angiotensin II. Gen Physiol Biophys. 2022 Sep 1;41(5):417-30. doi: 10.4149/gpb_2022033, PMID 36222340+.

Arora T, Kausar MA, Aboelnaga SM, Anwar S, Hussain MA, Sadaf S, et al. miRNAs and the Hippo pathway in cancer: exploring the therapeutic potential (Review). Oncol Rep. 2022 Jul 1;48(1):1-. doi: 10.3892/or.2022.8346, PMID 35699111.

Taheri M, Ghafouri-Fard S, Najafi S, Kallenbach J, Keramatfar E, Atri Roozbahani G et al. Hormonal regulation of telomerase activity and hTERT expression in steroid-regulated tissues and cancer. Cancer Cell Int. 2022 Dec;22(1):258. doi: 10.1186/s12935-022-02678-9, PMID 35974340.

Aurrière J, Goudenege D, Baechler SA, Huang SN, Gueguen N, Desquiret-Dumas V et al. Cancer/Testis Antigen 55 is required for cancer cell proliferation and mitochondrial DNA maintenance. Mitochondrion. 2022 May 1;64:19-26. doi: 10.1016/j.mito.2022.02.005, PMID 35189384.

Hashemi F, Razmi M, Tajik F, Zöller M, Dehghan Manshadi M, Mahdavinezhad F et al. Efficacy of whole cancer stem cell-based vaccines: A systematic review of preclinical and clinical studies. Stem Cells. 2023 Mar;41(3):207-32. doi 10.1093/stencils/sxac089, PMID 36573273.

Prakash P, Widjaja J, Marcella C, Sun B. Evaluation of the sensitivity and specificity of circulating microRNAs to diagnose breast cancer: A systematic review and meta-analysis. Int J Sci Res Dent Med Sci. 2023 Mar 11;5(1):35-47.

Chiappori F, Cupaioli FA, Consiglio A, Di Nanni N, Mosca E, Licciulli VF et al. Analysis of fecal microbiota and small ncRNAs in autism: detection of miRNAs and piRNAs with possible implications in Host-Gut Microbiota Cross-Talk. Nutrients. 2022 Mar 23;14(7):1340. doi: 10.3390/nu14071340, PMID 35405953.

Abdel Rahman MA, Pmo O. Potential therapeutic applications of microRNAs in cancer diagnosis and treatment: sharpening a double-edged sword? Eur J Pharmacol. 2022 Aug 15;932:175210. doi: 10.1016/j.ejphar.2022.175210, PMID 35981607.

Sawai S, Wong PF, Ramasamy TS. Hypoxia-regulated microRNAs: the molecular drivers of tumor progression. Crit Rev Biochem Mol Biol. 2022 Jul 4;57(4):351-76. doi: 10.1080/10409238.2022.2088684, PMID 35900938.

Fellizar A, Refuerzo V, Ramos JD, Albano PM. Expression of specific microRNAs in tissue and plasma in colorectal cancer. J Pathol Transl Med. 2022 May 3. doi: 10.4132/jp.2022.02.19, PMID 35501673.

Roshani R, Ashrafi F, Moslemi E, Khaledi HR. Alterations of miR-4772-3p and miR-3173-3p Expression in Tissue Compared to Normal Tissue by Real-time PCR. Thrita. 2022 Dec 31;11(2). doi: 10.5812/thrice-129435.

Stashko C. Tissue elasticity tunes immune infiltration, stress response activation, and metabolic state in breast cancer ([doctoral dissertation]. University of California, San Francisco).

Akhtarkhavari T, Bahrami AR, Matin MM. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol. 2022 Aug 26;932:175233. doi: 10.1016/j.ejphar.2022.175233, PMID 36038011.

Pasieka R, Zasoński G, Raczyńska KD. Role of long intergenic noncoding RNAs in cancers with an overview of microRNA binding. Mol Diagn Ther. 2023 Jan;27(1):29-47. doi: 10.1007/s40291-022-00619-w, PMID 36287372.

Rama AR, Lara P, Mesas C, Quiñonero F, Vélez C, Melguizo C, et al. A circular sponge against miR-21 enhances the antitumor activity of doxorubicin against breast cancer cells. Int J Mol Sci. 2022 Nov 26;23(23):14803. doi: 10.3390/ijms232314803, PMID 36499129.

Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies, and challenges. Nat Rev Drug Discov. 2010 Oct;9(10):775-89. doi: 10.1038/nrd3179, PMID 20885409, PMCID PMC3904431.

Published

17-04-2023

How to Cite

Balasubramanian, K. “New Developments in Cancer Treatment Using MiRNA Manipulation: Oncology-MiRNA”. International Journal of Trends in OncoScience, vol. 1, no. 2, Apr. 2023, pp. 19-25, https://www.ijtos.com/index.php/journal/article/view/17.

Issue

Section

Review Articles