CANCER STEM CELLS

Cancer Stem Cells: Potential For Treatment

Authors

  • Dr Somenath Ghosh Assistant Professor and Head, Rajendra Post-Graduate College, Jai Prakash University, Bihar, India
  • Durga Prasad TS Associate Professor, Department of Pharmacy Practice, Sri Padmavathi School of Pharmacy, Tirupati, Andhra Pradesh India
  • Ranjeet Kumar Chourasia Research Scholar, University Department of Chemistry (B. N. Mandal University, Madhepura, Bihar, India
  • Dr Ammar A. Razzak Mahmood Dept. of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad. Bab Al-Mouadam,10001, Baghdad,Iraq

DOI:

https://doi.org/10.22376/ijtos.2023.1.4.1-12

Keywords:

CSC, EMT, Cancer, stem cells, metabolism, microenvironment

Abstract

Cancer stem cells (CSCs) are unique cells within tumors that resist standard treatments and initiate tumor formation. Their presence and that of their progenitors contribute to tumor complexity, posing challenges to effective cancer therapies. Nevertheless, research on CSC biology holds promise for targeted therapies and reducing disease recurrence. This review provides a concise overview of CSCs and recent studies to enhance understanding their role in tumor heterogeneity and the tumor microenvironment, thereby advancing cancer research. CSCs exist in various cancers and can self-renew and differentiate into multiple cell types within tumors. These properties make them primary drivers of tumor growth and progression. Importantly, CSCs exhibit inherent resistance to conventional treatments like chemotherapy and radiation, making them formidable obstacles to successful outcomes. Recent studies have shed light on the intricate biology of CSCs, uncovering vulnerabilities and potential targets for novel therapeutic approaches; by specifically targeting CSCs, treatment resistance may be overcome, eliminating cells responsible for tumor initiation and recurrence. The tumor microenvironment, comprising cellular and non-cellular components, is critical in supporting CSCs and promoting tumor growth. CSCs interact with stromal cells, immune cells, and the extracellular matrix, forming a complex network that fosters tumor progression and therapy resistance. Investigating these dynamic interactions is essential for identifying therapeutic targets and interventions that disrupt the supportive environment surrounding CSCs.In conclusion, CSCs present challenges due to treatment resistance and their role in tumor growth. However, ongoing CSC-focused research offers hope for targeted therapies and strategies to prevent disease recurrence. Understanding tumor heterogeneity and the interactions between CSCs and the tumor microenvironment is crucial for advancing cancer research and improving patient outcomes. Unraveling the complexities of CSC biology paves the way for innovative approaches to combat cancer at its core.

References

Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-7. doi: 10.1038/nm0797-730, PMID 9212098.

Ailles LE, Weissman IL. Cancer stem cells in solid tumors. Curr Opin Biotechnol. 2007;18(5):460-6. doi: 10.1016/j.copbio.2007.10.007, PMID 18023337.

Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313-9. doi: 10.1038/nm.2304, PMID 21386835.

Gopalan V, Islam F, Lam AK Chapter 2. Surface markers for the identification of cancer stem cells. Vol. 1692; 2018. p. 17-29. doi: 10.1007/978-1-4939-7401-6_2, PMID 28986883.

Kwon MJ, Shin YK. Regulation of ovarian cancer stem cells or tumor-initiating cells. Int J Mol Sci. 2013 Mar 25;14(4):6624-48. doi: 10.3390/ijms14046624, PMID 23528891.

Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013 Sep 30;6:1347-61. doi: 10.2147/OTT.S36109, PMID 24124379.

Dick JE. Acute myeloid leukemia stem cells. Ann N Y Acad Sci. 2005 Jun;1044(1):1-5. doi: 10.1196/annals.1349.001, PMID 15958691.

Ball CR, Oppel F, Ehrenberg KR, Dubash TD, Dieter SM, Hoffmann CM et al. Succession of transiently active tumor‐initiating cell clones in human pancreatic cancer xenografts. EMBO Mol Med. 2017 Jul;9(7):918-32. doi: 10.15252/emmm.201607354, PMID 28526679.

Fulawka L, Donizy P, Halon A. Cancer stem cells--the current status of an old concept: literature review and clinical approaches. Biol Res. 2014;47(1):66. doi: 10.1186/0717-6287-47-66, PMID 25723910.

Hassan G, Seno M. Blood and cancer: cancer stem cells as origin of hematopoietic cells in solid tumor microenvironments. Cells. 2020;9(5):1293. doi: 10.3390/cells9051293, PMID 32455995.

Sun XX, Yu Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Nat. Publ. Gr. Acta Pharmacol Sin. 2015;36(10):1219-27. doi: 10.1038/aps.2015.92, PMID 26388155.

Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature. 2013;501(7467):328-37. doi: 10.1038/nature12624, PMID 24048065.

Fisher R, Pusztai L, Swanton C. Cancer heterogeneity: implications for targeted therapeutics. Nature. 2014;509:479-85.

Sun XX, Yu Q. Intra-tumor heterogeneity of cancer cells and its implications for cancer treatment. Acta Pharmacol Sin. 2015 Oct;36(10):1219-27. doi: 10.1038/aps.2015.92, PMID 26388155.

Kress WJ, Erickson DL. DNA bar codes: genes, genomics, and bioinformatics. Proc Natl Acad Sci U S A. 2008;105(8):2761-2. doi: 10.1073/pnas.0800476105, PMID 18287050.

Heindl A, Nawaz S, Yuan Y. Mapping spatial heterogeneity in the tumor microenvironment: A new era for digital pathology. Lab Invest. 2015;95(4):377-84. doi: 10.1038/labinvest.2014.155, PMID 25599534.

Nieto MA, Huang RYYJ, Jackson RAA, Thiery JPP. EMT: 2016. Cell. 2016;166(1):21-45. doi: 10.1016/j.cell.2016.06.028, PMID 27368099.

Shibue T, Weinberg RA. EMT, CSCS, and drug resistance: the mechanistic link and clinical implications. Nat. Publ. Gr. Nat Rev Clin Oncol. 2017;14(10):611-29. doi: 10.1038/nrclinonc.2017.44, PMID 28397828.

Grigore AD, Jolly MK, Jia D, Farach-Carson MC, Levine H. Tumor budding: the name is EMT. Partial EMT. J Clin Med. 2016;5(5):51. doi: 10.3390/jcm5050051, PMID 27136592.

Tiwari N, Gheldof A, Tatari M. Christofori G. EMT as the ultimate survival mechanism of cancer cells. InSeminars in cancer biology 2012 Jun 1 (Vol. 22, No. 3, pp. 194-207). Academic Press.

Feng Y, Liu X, Pauklin S. 3D chromatin architecture and epigenetic regulation in cancer stem cells. Protein Cell. 2021 Jun;12(6):440-54. doi: 10.1007/s13238-020-00819-2, PMID 33453053.

Van Zant G, Liang Y. The role of stem cells in aging. Exp Hematol. 2003 Aug 1;31(8):659-72. doi: 10.1016/s0301-472x(03)00088-2, PMID 12901970.

Coulouarn C, Factor VM, Thorgeirsson SS. Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer. Hepatology. 2008;47(6):2059-67. doi: 10.1002/hep.22283, PMID 18506891.

Amin R, Mishra L. Liver stem cells and TGF-beta in hepatic carcinogenesis. Gastrointest Cancer Res. 2008;2(4);Suppl:S27-30. PMID 19343145.

Tang Y, Kitisin K, Jogunoori W, Li C, Deng CX, Mueller SC, et al. Progenitor/ stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A. 2008;105(7):2445-50. doi: 10.1073/pnas.0705395105, PMID 18263735.

Hiyama E, Hiyama K. Telomere and telomerase in stem cells. Br J Cancer. 2007 Apr;96(7):1020-4. doi: 10.1038/sj.bjc.6603671, PMID 17353922.

Marquardt JU, Thorgeirsson SS. Stem cells in hepatocarcinogenesis: evidence from genomic data. Semin Liver Dis. 2010;30(1):26-34. doi: 10.1055/s-0030-1247130, PMID 20175031.

Mishra L, Banker T, Murray J, Byers S, Thenappan A, He AR, et al. Liver stem cells and hepatocellular carcinoma. Hepatology. 2009;49(1):318-29. doi: 10.1002/hep.22704, PMID 19111019.

Tan BT, Park CY, Ailles LE, Weissman IL. The cancer stem cell hypothesis: a work in progress. Lab Invest. 2006;86(12):1203-7. doi: 10.1038/labinvest.3700488, PMID 17075578.

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8. doi: 10.1073/pnas.0530291100, PMID 12629218.

Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821-8. PMID 14522905.

Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature. 2012;488(7412):522-6. doi: 10.1038/nature11287, PMID 22854781.

Vanner RJ, Remke M, Gallo M, Selvadurai HJ, Coutinho F, Lee L, et al. Quiescent sox2(+) cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell. 2014;26(1):33-47. doi: 10.1016/j.ccr.2014.05.005, PMID 24954133.

Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, et al. Fatemapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549(7671):227-32. doi: 10.1038/nature23666, PMID 28854171.

Park NI, Guilhamon P, Desai K, McAdam RF, Langille E, O’Connor M, et al. ASCL1 reorganizes chromatin to direct neuronal fate and suppress tumorigenicity of glioblastoma stem cells. Cell Stem Cell. 2017;21(3):411. doi: 10.1016/j.stem.2017.08.008.

Schober M, Fuchs E. Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-β and integrin/ focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci U S A. 2011;108(26):10544-9. doi: 10.1073/pnas.1107807108, PMID 21670270.

Li VS, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt signaling through inhibition of β-catenin degradation in an intact Axin1 complex. Cell. 2012;149(6):1245-56. doi: 10.1016/j.cell.2012.05.002, PMID 22682247.

Akala OO, Park IK, Qian D, Pihalja M, Becker MW, Clarke MF. Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature. 2008;453(7192):228-32. doi: 10.1038/nature06869, PMID 18418377.

Jamieson CHM, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blastcrisis CML. N Engl J Med. 2004;351(7):657-67. doi: 10.1056/NEJMoa040258, PMID 15306667.

Clarke MF. Chronic myelogenous leukemia — identifying the hydra’s heads. N Engl J Med. 2004;351(7):634-6. doi: 10.1056/NEJMp048120, PMID 15306664.

Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547(7661):104-8. doi: 10.1038/nature22993, PMID 28658204.

Lapouge G, Youssef KK, Vokaer B, Achouri Y, Michaux C, Sotiropoulou PA, et al. Identifying the cellular origin of squamous skin tumors. Proc Natl Acad Sci U S A. 2011;108(18):7431-6. doi: 10.1073/pnas.1012720108, PMID 21502497.

White AC, Tran K, Khuu J, Dang C, Cui Y, Binder SW, et al. Defining the origins of Ras/p53-mediated squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108(18):7425-30. doi: 10.1073/pnas.1012670108, PMID 21502519.

Saygin C, Matei D, Majeti R, Reizes O, Lathia JD. Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell. 2019;24(1):25-40. doi: 10.1016/j.stem.2018.11.017, PMID 30595497.

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983-8. doi: 10.1073/pnas.0530291100, PMID 12629218.

Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J, et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature. 2006;442(7104):818-22. doi: 10.1038/nature04980, PMID 16862118.

Bahr C, von Paleske L, Uslu VV, Remeseiro S, Takayama N, Ng SW, et al. A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature. 2018;553(7689):515-20. doi: 10.1038/nature25193, PMID 29342133.

Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. doi: 10.1038/35102167, PMID 11689955.

Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67. doi: 10.1186/1476-4598-5-67, PMID 17140455.

Chio IIC, Jafarnejad SM, Ponz-Sarvise M, Park Y, Rivera K, Palm W, et al. NRF2 promotes tumor maintenance by modulating mRNA translation in pancreatic cancer. Cell. 2016;166(4):963-76. doi: 10.1016/j.cell.2016.06.056, PMID 27477511.

Oshimori N, Oristian D, Fuchs E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 2015;160(5):963-76. doi: 10.1016/j.cell.2015.01.043, PMID 25723170.

Lagasse E. Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther. 2008;15(2):136-42. doi: 10.1038/sj.gt.3303068, PMID 17989699.

Oliveira AM, Ross JS, Fletcher JA. Tumor suppressor genes in breast cancer: the gatekeepers and the caretakers. Pathol Patterns Rev. 2005 Dec 1;124;Suppl(suppl_1):S16-28:S16-28. doi: 10.1309/5XW3L8LU445QWGQR, PMID 16468415.

Yang JY, Yang MQ, Luo Z, Ma Y, Li J, Deng Y et al. A hybrid machine learning-based method for classifying the Cushing’s syndrome with comorbid adrenocortical lesions. BMC Genomics. 2008 Mar;9(1);Suppl 1:S23. doi: 10.1186/1471-2164-9-S1-S23, PMID 18366613.

Lecuit T, Yap AS. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat Cell Biol. 2015;17(5):533-9. doi: 10.1038/ncb3136, PMID 25925582.

Bjerkvig R, Tysnes BB, Aboody KS, Najbauer J, Terzis AJ. Opinion: The origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer. 2005 Nov 1;5(11):899-904. doi: 10.1038/nrc1740, PMID 16327766.

Duelli D, Lazebnik Y. Cell fusion: A hidden enemy? Cancer Cell. 2003;3(5):445-8. doi: 10.1016/s1535-6108(03)00114-4, PMID 12781362.

Pawelek JM. Fusion of bone marrow‐derived cells with cancer cells: metastasis as a secondary disease in cancer. Chin J Cancer. 2014;33(3):133-9. doi: 10.5732/cjc.013.10243, PMID 24589183.

Pomerantz J, Blau HM. Nuclear reprogramming: A key to stem cell function in regenerative medicine. Nat Cell Biol. 2004;6(9):810-6. doi: 10.1038/ncb0904-810, PMID 15340448.

Huang S, Cai M, Zheng Y, Zhou L, Wang Q, Chen L. miR‐888 in MCF-7 side population sphere cells directly targets E‐cadherin. J Genet Genomics. 2014;41(1):35-42. doi: 10.1016/j.jgg.2013.12.002, PMID 24480745.

Cuong BC, Pham VH. Some fuzzy logic operators for picture fuzzy sets. In2015 seventh international conference on knowledge and systems engineering (KSE). IEEE Publications; 2015 Oct 8. p. 132-7. doi: 10.1109/KSE.2015.20.

VanPham P. Stem cells and cancer stem cells. In: Breast cancer stem cells & therapy resistance; 2015. p. 5-24. Springer. Switzerland AG.

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005 Apr 1;7(4):387-97. doi: 10.1016/j.ccr.2005.03.023, PMID 15837627.

Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer‐stem‐cell research. Nat Rev Cancer. 2005;5(4):311-21. doi: 10.1038/nrc1592, PMID 15803157.

Owen M, Friedenstein AJ. Stromal stem cells: marrow-derived osteogenic precursors. Ciba Found Symp. 1988;136:42-60. doi: 10.1002/9780470513637.ch4, PMID 3068016.

Schipani E, Kronenberg HM. Adult mesenchymal stem cells. In: Stembook. Cambridge, MA: Harvard Stem Cell Institute; 2008.

Lin SP, Lee YT, Wang JY, Miller SA, Chiou SH, Hung MC et al. Survival of cancer stem cells under hypoxia and serum depletion via decrease in PP2A activity and activation of p38‐ MAPKAPK2‐Hsp27. PLOS ONE. 2012;7(11):e49605. doi: 10.1371/journal.pone.0049605, PMID 23185379.

Sun B, Liu R, Xiao ZD, Zhu X. c‐MET protects breast cancer cells from apoptosis induced by sodium butyrate. PLOS ONE. 2012;7(1):e30143. doi: 10.1371/journal.pone.0030143, PMID 22253909.

Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular immunotherapy targeting cancer stem cells: preclinical evidence and clinical perspective. Cells. 2021 Mar 4;10(3):543. doi: 10.3390/cells10030543, PMID 33806296.

Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006 Jan 1;6(1):38-51. doi: 10.1038/nrc1779, PMID 16397526.

Phung CD, Nguyen HT, Tran TH, Choi HG, Yong CS, Kim JO. Rational combination immunotherapeutic approaches for effective cancer treatment. J Control Release. 2019 Jan 28;294:114-30. doi: 10.1016/j.jconrel.2018.12.020, PMID 30553850.

Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F et al. Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol. 2020 Feb;235(2):790-803. doi: 10.1002/jcp.29044, PMID 31286518.

Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R's of radiobiology revisited. Stem Cells. 2010 Apr 1;28(4):639-48. doi: 10.1002/stem.318, PMID 20135685.

Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756-60. doi: 10.1038/nature05236, PMID 17051156.

Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780-3. doi: 10.1038/nature07733, PMID 19194462.

Dong C, Yuan T, Wu Y, Wang Y, Fan TWM, Miriyala S, et al. Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell. 2013;23(3):316-31. doi: 10.1016/j.ccr.2013.01.022, PMID 23453623.

Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC et al. A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 2016;76(8):2465-77. doi: 10.1158/0008-5472.CAN-15-2402, PMID 26896279.

Wu SY, Watabe K. The roles of microglia/macrophages in tumor progression of brain cancer and metastatic disease. Front Biosci (Landmark Ed). 2017;22(10):1805-29. doi: 10.2741/4573, PMID 28410147.

Yan Y, Liu F, Han L, Zhao L, Chen J, Olopade OI et al. HIF-2a promotes conversion to a stem cell phenotype and induces chemoresistance in breast cancer cells by activating Wnt and Notch pathways. J Exp Clin Cancer Res. 2018;37(1):256. doi: 10.1186/s13046-018-0925-x, PMID 30340507.

Qin J, Liu Y, Lu Y, Liu M, Li M, Li J et al. Hypoxia-inducible factor 1 alpha promotes cancer stem cells-like properties in human ovarian cancer cells by upregulating SIRT1 expression. Sci Rep. 2017 Sep 6;7(1):10592. doi: 10.1038/s41598-017-09244-8, PMID 28878214.

Cojoc M, Peitzsch C, Kurth I, Trautmann F, Kunz-Schughart LA, Telegeev GD, et al. 2015.

Aldehyde dehydrogenase is regulated by b-catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res. 1482-1494;75.

Bondy SC, Naderi S. Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol. 1994 Jul 5;48(1):155-9. doi: 10.1016/0006-2952(94)90235-6, PMID 8043018.

Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16(3):225-38. doi: 10.1016/j.stem.2015.02.015, PMID 25748930.

Siebzehnrubl FA, Silver DJ, Tugertimur B, Deleyrolle LP, Siebzehnrubl D, Sarkisian MR, et al. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol Med. 2013;5(8):1196-212. doi: 10.1002/emmm.201302827, PMID 23818228.

Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A. 2016;113(14):E2047-56. doi: 10.1073/pnas.1602883113, PMID 27001847.

Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang T-H, et al.; Cancer Genome Atlas Research Network. The immune landscape of cancer. Immunity 48. 2018;830.e14:812.

Ho YJ, Li JP, Fan CH, Liu HL, Yeh CK. Ultrasound in tumor immunotherapy: current status and future developments. J Control Release. 2020 Jul 10;323:12-23. doi: 10.1016/j.jconrel.2020.04.023, PMID 32302759.

Al-Hisnawi HT, Abood WS. Gene expression of cytokines IFN-γ, TGF-β, IL-4 and IL-10 in children infected with HMPV in Al-Najaf city. Gene Expr. 2022 Feb;45(01).

Nappo G, Handle F, Santer FR, McNeill RV, Seed RI, Collins AT et al. The immunosuppressive cytokine interleukin-4 increases the clonogenic potential of prostate stem-like cells by activation of STAT6 signalling. Oncogenesis. 2017;6(5):e342. doi: 10.1038/oncsis.2017.23, PMID 28553931.

Borah A, Raveendran S, Rochani A, Maekawa T, Kumar DS. Targeting self-renewal pathways in cancer stem cells: clinical implications for cancer therapy. Oncogenesis. 2015 Nov;4(11):e177. doi: 10.1038/oncsis.2015.35, PMID 26619402.

Published

03-10-2023

How to Cite

Somenath Ghosh, D., D. P. TS, R. K. Chourasia, and D. A. A. Razzak Mahmood. “CANCER STEM CELLS: Cancer Stem Cells: Potential For Treatment”. International Journal of Trends in OncoScience, vol. 1, no. 4, Oct. 2023, pp. 1-12, doi:10.22376/ijtos.2023.1.4.1-12.

Issue

Section

Review Articles