Precision Medicine: Personalizing The Fight Against Cancer

Authors

  • Dr Ammar A. Razzak Mahmood Dept. of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad. Bab Al-Mouadam,10001. Baghdad Iraq.
  • Dr. Anand Mohan Jha Post Graduate Department of Chemistry, M. L. S. M. College, Darbhanga (L. N. Mithila University, Darbhanga, Bihar)
  • Kavitha Manivannan PhD Biotechnology, Bharathidasan arts and science college, Kutumbalur perambalur

DOI:

https://doi.org/10.22376/ijtos.2023.2.1.10-18

Keywords:

Precision Oncology, Molecular Biomarker Profiling, Predictive Biomarker Assay, Tumor Heterogeneity, Nanomaterials in Precision Therapy, Artificial Intelligence in Precision Medicine

Abstract

Over the past two decades, advancements in cancer research have influenced the molecular landscape, revealing the intricate heterogeneity inherent in various tumors and diseases. It has challenged the viability of universal treatment approaches, leading to the rise of precision oncology, a strategy focused on administering personalized treatments to the right patient at the right time. Leveraging molecular biomarker profiling, precision oncology aims for optimal clinical efficacy, minimal safety concerns, and reduced financial burden. Predictive biomarker assays have become pivotal in therapy selection, evaluating specific biological characteristics like protein expression or gene mutations associated with positive treatment responses. Profiling DNA emerges as a pivotal aspect, unraveling the genetic intricacies guiding personalized treatment plans. Treatment decision-making in precision medicine, coupled with the transformative impact of immunotherapy, underscores the paradigm shift in patient care. Nanomaterials exhibit promise in precision therapy, revolutionizing drug delivery. Biomarkers play a crucial role in tailoring interventions, while radiotheranostics further enhance precision in cancer treatment. The integration of artificial intelligence amplifies diagnostic and therapeutic precision, fostering a dynamic landscape in personalized medicine. Tackling these challenges is crucial, particularly in the face of tumor heterogeneity and high mutation rates in certain cancers that resist standardized approaches. Precision medicine acknowledges diverse variables influencing outcomes but focuses on genetic and molecular elements grounded in an enhanced understanding of cancer biology. The primary goal of precision medicine is to selectively intervene to benefit responsive patients while avoiding unnecessary and potentially harmful treatments. This review comprehensively explores key facets of precision medicine, focusing on DNA profiling, and seeks to elucidate the role of genetic information in personalized treatment decisions. Additionally, it delves into the intersection of precision medicine with immunotherapy, showcasing advancements in tailoring therapies to individual immune responses. The article also discusses the innovative use of nanomaterials for precise therapeutic interventions, emphasizes the significance of biomarkers in guiding targeted treatments, explores radio theranostics, and evaluates the transformative impact of artificial intelligence in precision medicine.

References

Jaffee EM, Dang CV, DB, et al. Future cancer research priorities in the USA: a Lancet Oncology commission. Lancet Oncol. 2017;18(11):e653-706. doi: 10.1016/s1470‐2045(17)30698‐8.

Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc. 1946;132(14):838-47. doi: 10.1001/jama.1946.02870490016004, PMID 20274882.

Fahey FH, Grant FD, Thrall JH. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 2017;4(1):15. doi: 10.1186/s40658-017-0182-7, PMID 28451906.

Hertz B. A tribute to Dr. Saul Hertz: the discovery of the medical uses of radioiodine. World J Nucl Med. 2019;18(1):8-12. doi: 10.4103/wjnm.WJNM_107_18, PMID 30774539.

Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJ, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2008;35(10):1941-59. doi: 10.1007/s00259-008-0883-1, PMID 18670773.

Markou P, Chatzopoulos D. Yttrium-90 silicate radiosynovectomy treatment of painful synovitis in knee osteoarthritis. Results after 6 months. Hell J Nucl Med. 2009;12(1):33-6. PMID 19330180.

Banerjee S, Pillai MR, Knapp FF. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 2015;115(8):2934-74. doi: 10.1021/cr500171e, PMID 25865818.

Coughlin EE. Design and characterization of therapeutic gold nanostars ([doctoral dissertation]. Northwestern University).

Bizhanova A, Kopp P. Minireview: the sodium-iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology. 2009;150(3):1084-90. doi: 10.1210/en.2008-1437, PMID 19196800.

Cohen IM, Robles A, Mendoza P, Airas RM, Montoya EH. Experimental evidences of 95mTc production in a nuclear reactor. Appl Radiat Isot. 2018;135:207-11. doi: 10.1016/j.apradiso.2018.02.001, PMID 29427956.

Costa IM, Siksek N, Volpe A, Man F, Osytek KM, Verger E et al. Relationship of in vitro toxicity of technetium-99m to subcellular localisation and absorbed dose. Int J Mol Sci. 2021;22(24):13466. doi: 10.3390/ijms222413466, PMID 34948266.

Spang P, Herrmann C, Roesch F. Bifunctional gallium-68 chelators: past, present, and future. Semin Nucl Med. 2016;46(5):373-94. doi: 10.1053/j.semnuclmed.2016.04.003, PMID 27553464.

Stevens LA, Claybon MA, Schmid CH, Chen J, Horio M, Imai E; et al. Evaluation of the chronic kidney disease epidemiology collaboration equation for estimating the glomerular filtration rate in multiple ethnicities. Kidney Int. 2011;79(5):555-62. doi: 10.1038/ki.2010.462, PMID 21107446.

Wright CL, Zhang J, Tweedle MF, Knopp MV, Hall NC. Theranostic imaging of yttrium-90. BioMed Res Int. 2015;2015:481279. doi: 10.1155/2015/481279, PMID 26106608.

Kam BLR, Teunissen JJM, Krenning EP, de Herder WW, Khan S, van Vliet EI et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39;Suppl 1 (Suppl. S1):S103-12. doi: 10.1007/s00259-011-2039-y, PMID 22388631.

Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schaefers M, Essler M et al. German multicenter study investigating Lu-177-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58:85-90.

Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: making precision medicine possible. CA Cancer J Clin. 2023 May;73(3):255-74. doi: 10.3322/caac.21768, PMID 36622841.

Bodei L, Kidd M, Paganelli G, Grana CM, Drozdov I, Cremonesi M, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42(1):5-19. doi: 10.1007/s00259-014-2893-5, PMID 25273832.

Verburg FA, Wiessmann M, Neuloh G, Mottaghy FM, Brockmann MA. Intraindividual comparison of selectiveintraarterial versus systemic intravenous 68ga-dotatate PET/CT in patients with inoperable meningioma. Nuklearmedizin. 2019;58(1):23-7. doi: 10.1055/a-0802-5039, PMID 30769370.

Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15(17):5323-37. doi: 10.1158/1078-0432.CCR-09-0737, PMID 19723653.

Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinolinebased theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59(9):1415-22. doi: 10.2967/jnumed.118.210443, PMID 29626119.

Bartolomei M, Bodei L, De Cicco C, Grana CM, Cremonesi M, Botteri E, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATOC in recurrent meningioma. Eur J Nucl Med Mol Imaging. 2009;36(9):1407-16. doi: 10.1007/s00259-009-1115-z, PMID 19319527.

Mak IYF, Hayes AR, Khoo B, Grossman A. Peptide receptor radionuclide therapy as a novel treatment for metastatic and invasive phaeochromocytoma and paraganglioma. Neuroendocrinology. 2019;109(4):287-98. doi: 10.1159/000499497, PMID 30856620.

Van Vliet EI, van Eijck CH, de Krijger RR, Nieveen van Dijkum EJ, Teunissen JJ, Kam BL, et al. Neoadjuvant treatment of nonfunctioning pancreatic neuroendocrine tumors with [177Lu-DOTA0,Tyr3]octreotate. J Nucl Med. 2015;56(11):1647-53. doi: 10.2967/jnumed.115.158899, PMID 26272813.

Hofman MS. PSMA targeted therapies. Advanced Prostate Cancer Consensus Conference 2019; Basel, Switzerland; August 29-31, 2019.

Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, et al. Targeted α-therapy of metastatic castration-resistant prostate cancer with 225Ac-PSMA-617: swimmer-plot analysis suggests efficacy regarding duration of tumor control. J Nucl Med. 2018;59(5):795-802. doi: 10.2967/jnumed.117.203539, PMID 29326358.

Jokar N, Assadi M, Yordanova A, Ahmadzadehfar H. Bench-to-bedside theranostics in nuclear medicine. Curr Pharm Des. 2020;26(31):3804-11. doi: 10.2174/1381612826666200218104313, PMID 32067609.

Peng L, Fu J, Wang W, Hofman FM, Chen TC, Chen L. Distribution of cancer stem cells in two human brain gliomas. Oncol Lett. 2019;17(2):2123-30. doi: 10.3892/ol.2018.9824, PMID 30719107.

Zhou W, Fu XQ, Zhang LL, Zhang J, Huang X, Lu XH et al. The AKT1/NF-kappaB/Notch1/PTEN axis has an important role in chemoresistance of gastric cancer cells. Cell Death Dis. 2013;4(10):e847. doi: 10.1038/cddis.2013.375, PMID 24113181.

Wang J, Sullenger BA, Rich JN. Notch signaling in cancer stem cells. Adv Exp Med Biol. 2012;727:174-85. doi: 10.1007/978-1-4614-0899-4_13, PMID 22399347.

She X, Qin S, Jing B, Jin X, Sun X, Lan X et al. Radiotheranostic targeting cancer stem cells in human colorectal cancer xenografts. Mol Imag Biol. 2020;22(4):1043-53. doi: 10.1007/s11307-019-01467-7, PMID 32125599.

Weng D, Jin X, Qin S, Lan X, Chen C, Sun X et al. Radioimmunotherapy for CD133 (+) colonic cancer stem cells inhibits tumor development in nude mice. Oncotarget. 2017;8(27):44004-14. doi: 10.18632/oncotarget.16868, PMID 28430648.

Hope TA, Abbott A, Colucci K, Bushnell DL, Gardner L, Graham WS, et al. NANETS/SNMMI procedure standard for somatostatin receptor-based peptide receptor radionuclide therapy with 177Lu-DOTATATE. J Nucl Med. 2019;60(7):937-43. doi: 10.2967/jnumed.118.230607, PMID 31263080.

Yonekura Y, Mattsson S, Flux G, Bolch WE, Dauer LT, Fisher DR, et al. ICRP Publication 140: radiological protection in therapy with radiopharmaceuticals. Ann ICRP. 2019;48(1):5-95. doi: 10.1177/0146645319838665, PMID 31565950.

Wibmer AG, Hricak H, Ulaner GA, Weber W. Trends in oncologic hybrid imaging. Eur J Hybrid Imaging. 2018;2(1):1. doi: 10.1186/s41824-017-0019-6, PMID 29782605.

Published

05-01-2024

How to Cite

A. Razzak Mahmood, D. A., D. A. Mohan Jha, and K. Manivannan. “Precision Medicine: Personalizing The Fight Against Cancer”. International Journal of Trends in OncoScience, vol. 2, no. 1, Jan. 2024, pp. 10-18, doi:10.22376/ijtos.2023.2.1.10-18.

Issue

Section

Review Articles