Artificial Intelligence - A Primer for Diagnosis and Interpretation of Breast Cancer

Authors

  • Dr. Anand Mohan Jha Post Graduate Department of Chemistry, M. L. S. M. College, Darbhanga (L. N. Mithila University, Darbhanga, Bihar)
  • Dr. Abikesh Prasada Kumar Mahapatra School of Pharmacy, OPJS University, Churu, Rajasthan, India
  • Dr. John Abraham Assistant Professor, Department of Family Medicine, St. Johns National Academy of Health Sciences, Bangalore, India- 560034
  • Dr. Somenath Ghosh Assistant Professor and Head, Rajendra Post-Graduate College, Jai Prakash University, Bihar, India

DOI:

https://doi.org/10.22376/ijtos.2024.2.1.27-36

Keywords:

Breast Cancer, Artificial Intelligence, Digital mammography, Ultrasound, MRI for Breast Cancer, AI in Breast Pathology

Abstract

Breast Cancer (BC) is a major universal health problem. Early detection and precise diagnosis are vital for enlightening outcomes. Artificial Intelligence (AI) technologies can potentially revolutionize the field of BC by providing quantitative representations of medical images to assist in segmentation, diagnosis, and prognosis. AI can improve image quality, detect and segment breast lesions, classify cancer and predict its behavior, and integrate data from multiple sources to predict clinical outcomes. It can lead to more personalized and effective treatment for BC patients. Challenges faced by AI in real-life solicitations include data curation, model interpretability, and run-through guidelines. However, the clinical implementation of AI is expected to deliver vital guidance for patient-tailored management. BC is a major global health problem; early detection and treatment are crucial for improving outcomes. Imaging detection is a key screening, diagnosis, and treatment effectiveness assessment tool. However, the irresistible number of images creates a heavy capacity for radiologists and delays reporting. AI has the potential to revolutionize BC imaging by improving efficiency and accuracy. AI can recognize, segment, and diagnose tumor lesions automatically and analyze tumor images on a molecular level. It could lead to more personalized treatment strategies. However, AI-assisted imaging diagnosis is still in its early stages of development, and more research is needed to validate its clinical effectiveness. Therefore, AI is a promising new technology that has the potential to progress the diagnosis and treatment of BC, and AI-assisted imaging diagnosis is a promising new technology for improving the early detection and diagnosis of BC. More research is needed to bring this technology to clinical practice.

References

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660, PMID 33538338.

Sharma A, Hooda N, Sharma R, Gupta NR. A review of environmental pollutants as breast cancer risk factor. AIP Conf Proc. 2023 Feb 3;2558(1). doi: 10.1063/5.0120685.

Irmici G, Della Pepa G, D’Ascoli E, De Berardinis C, Giambersio E, Rabiolo L et al. Exploring the potential of artificial intelligence in breast ultrasound. Crit Rev Oncog™ in Oncogenesis. 2023. doi: 10.1615/CritRevOncog.2023048873.

Mello-Thoms C, Mello CAB. Clinical applications of artificial intelligence in radiology. Br J Radiol. 2023 Apr;96(1150):20221031. doi: 10.1259/bjr.20221031, PMID 37099398.

Silva HECD, Santos GNM, Leite AF, Mesquita CRM, Figueiredo PTS, Stefani CM et al. The use of artificial intelligence tools in cancer detection compared to the traditional diagnostic imaging methods: an overview of the systematic reviews. PLOS ONE. 2023 Oct 5;18(10):e0292063. doi: 10.1371/journal.pone.0292063, PMID 37796946.

Villa-Camacho JC, Baikpour M, Chou SS. Artificial intelligence for breast US. J Breast Imaging. 2023 Jan 1;5(1):11-20. doi: 10.1093/jbi/wbac077.

Bellini D, Milan M, Bordin A, Rizzi R, Rengo M, Vicini S et al. A focus on the synergy of radiomics and RNA sequencing in breast cancer. Int J Mol Sci. 2023 Apr 13;24(8):7214. doi: 10.3390/ijms24087214, PMID 37108377.

Kjær EKR, Vase CB, Rossing M, Ahlborn LB, Hjalgrim LL. Detection of circulating tumor-derived material in peripheral blood of pediatric sarcoma patients: A systematic review. Transl Oncol. 2023 Aug 1;34:101690. doi: 10.1016/j.tranon.2023.101690, PMID 37201250.

Shah N. Artificial intelligence in pharma industry-A review. Asian J Pharm (AJP). 2023 Jun 15;17(2).

Moghbel M, Ooi CY, Ismail N, Hau YW, Memari N. A review of breast boundary and pectoral muscle segmentation methods in computer-aided detection/diagnosis of breast mammography. Artif Intell Rev. 2020;53(3):1873-918. doi: 10.1007/s10462-019-09721-8.

Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer. 2021;124(1):13-26. doi: 10.1038/s41416-020-01161-4, PMID 33239679.

Tabar L, Yen MF, Vitak B, Chen HH, Smith RA, Duffy SW. Mammography service screening and mortality in breast cancer patients: 20-year follow-up before and after introduction of screening. Lancet. 2003;361(9367):1405-10. doi: 10.1016/S0140-6736(03)13143-1, PMID 12727392.

Feig S. Cost-effectiveness of mammography, MRI, and ultrasonography for breast cancer screening. Radiol Clin North Am. 2010;48(5):879-91. doi: 10.1016/j.rcl.2010.06.002, PMID 20868891.

Zhang J, Wu J, Zhou XS, Shi F, Shen D. Recent advancements in artificial intelligence for breast cancer: image augmentation, segmentation, diagnosis, and prognosis approaches. Semin Cancer Biol. 2023 Sep 12;96:11-25. doi: 10.1016/j.semcancer.2023.09.001, PMID 37704183.

Zhi H, Ou B, Luo BM, Feng X, Wen YL, Yang HY. Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J Ultrasound Med. 2007;26(6):807-15. doi: 10.7863/jum.2007.26.6.807, PMID 17526612.

van Geel JJL, de Vries EFJ, van Kruchten M, Hospers GAP, Glaudemans AWJM, Schröder CP. Molecular imaging as biomarker for treatment response and outcome in breast cancer. Ther Adv Med Oncol. 2023 May;15:17588359231170738. doi: 10.1177/17588359231170738, PMID 37223262.

Dahan M, Cortet M, Lafon C, Padilla F. Combination of focused ultrasound, immunotherapy, and chemotherapy: new perspectives in breast cancer therapy. J Ultrasound Med. 2023 Feb;42(3):559-73. doi: 10.1002/jum.16053, PMID 35869903.

Jacob G, Jose I, Sujatha S. Breast cancer detection: A comparative review on passive and active thermography. Infrared Phys Technol. 2023 Sep 30;134:104932. doi: 10.1016/j.infrared.2023.104932.

Windsor GO, Bai H, Lourenco AP, Jiao Z. Application of artificial intelligence in predicting lymph node metastasis in breast cancer. Front Radiol. 2023 Feb 20;3:928639. doi: 10.3389/fradi.2023.928639, PMID 37492388.

Simmons L, Feng L, Fatemi-Ardekani A, Noseworthy M. Breast cancer calcifications and implications in medical imaging. Crit Rev™ in Biomedical Engineering.

Singh VK, Abdel-Nasser M, Akram F, Rashwan HA, Sarker MMK, Pandey N et al. Breast tumor segmentation in ultrasound images using contextual-information-aware deep adversarial learning framework. Expert Syst Appl. 2020;162:113870. doi: 10.1016/j.eswa.2020.113870.

Muzahir S, Ulaner GA, Schuster DM. Evaluation of treatment response in patients with breast cancer. PET Clin. 2023 Jun 6;18(4):517-30. doi: 10.1016/j.cpet.2023.04.007, PMID 37291018.

Lo Gullo RL, Marcus E, Huayanay J, Eskreis-Winkler S, Thakur S, Teuwen J et al. Artificial intelligence-enhanced breast MRI: applications in breast cancer primary treatment response assessment and prediction. Invest Radiol. 2023 Jul 27:10-97. doi: 10.1097/RLI.0000000000001010, PMID 37493391.

Zheng D, He X, Jing J. Overview of artificial intelligence in breast cancer medical imaging. J Clin Med. 2023 Jan 4;12(2):419. doi: 10.3390/jcm12020419, PMID 36675348.

Thakur N, Kumar P, Kumar A. A systematic review of machine and deep learning techniques for the identification and classification of breast cancer through medical image modalities. Multimedia Tool Appl. 2023 Sep 28:1-94. doi: 10.1007/s11042-023-16634-w.

Pontico M, Conte M, Petronella F, Frantellizzi V, De Feo MS, Di Luzio D et al. 18F-fluorodeoxyglucose (18F-FDG) functionalized gold nanoparticles (GNPs) for plasmonic photothermal ablation of cancer: a review. Pharmaceutics. 2023 Jan 18;15(2):319. doi: 10.3390/pharmaceutics15020319, PMID 36839641.

Treglia G, Albano D, Dondi F, Bertagna F, Gheysens O. A role of FDG PET/CT for Response Assessment in Large Vessel Disease? Nucl Med. 2023 Jan 1 (Vol. 53, No. 1, pp. 78-85);53(1):78-85. doi: 10.1053/j.semnuclmed.2022.08.002, PMID 36075772.

Di Micco R, Santurro L, Gasparri ML, Zuber V, Cisternino G, Baleri S; et al. PET/MRI for Staging the Axilla in Breast Cancer: Current Evidence and the Rationale for SNB vs. PET/MRI.

Sutherland DEK, Azad AA, Murphy DG, Eapen RS, Kostos L, Hofman MS. Role of FDG PET/CT in management of patients with prostate cancer. Semin Nucl Med. 2023 Jul 1. doi: 10.1053/j.semnuclmed.2023.06.005, PMID 37400321.

Moore NS, McWilliam A, Aneja S. Bladder cancer radiation oncology of the future: prognostic modelling, radiomics, and treatment planning with artificial intelligence. Radiat Oncol. 2023 Jan 1 (Vol. 33, No. 1, pp. 70-75);33(1):70-5. doi: 10.1016/j.semradonc.2022.10.009, PMID 36517196.

Corredor G, Bharadwaj S, Pathak T, Viswanathan VS, Toro P, Madabhushi A. A review of AI-based radiomics and computational pathology approaches in triple-negative breast cancer: current applications and perspectives. Clin Breast Cancer. 2023 Jun 21. doi: 10.1016/j.clbc.2023.06.004.

Romeo V, Moy L, Pinker K. AI-enhanced PET and MR imaging for patients with breast cancer. PET Clin. 2023 Jun 17;18(4):567-75. doi: 10.1016/j.cpet.2023.05.002.

Srivastava R. Applications of artificial intelligence multiomics in precision oncology. J Cancer Res Clin Oncol. 2023 Jan;149(1):503-10. doi: 10.1007/s00432-022-04161-4, PMID 35796775.

Mohammadi S, Livani MA. A Review of CAD systems for Breast Mass Detection in Mammography Based on Deep Learning.

Din M, Agarwal S, Grzeda M, Wood DA, Modat M, Booth TC. Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis. J NeuroIntervent Surg. 2023 Mar 1;15(3):262-71. doi: 10.1136/jnis-2022-019456, PMID 36375834.

Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18(7):1527-54. doi: 10.1162/neco.2006.18.7.1527, PMID 16764513.

Lotter W, Diab AR, Haslam B, Kim JG, Grisot G, Wu E; et al. Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach. Nat.

Mhaske H, Patil M, Thote J, Shendage A, Tallapalli R. A review on melanoma cancer detection using artificial intelligence. IJRASET;11(2):1335-9. doi: 10.22214/ijraset.2023.49231.

Morrison TM, Stitzel JD, Levine SM Modeling and Simulation in Biomedical Engineering: Regulatory Science and Innovation for Advancing Public Health. Ann Biomed Eng. 2023;51(1):1-5. doi: 10.1007/s10439-022-03116-7. PMID 36562847.

Hong TS, Tomé WA, Harari PM. Heterogeneity in head and neck IMRT target design and clinical practice. Radiother Oncol. 2012;103(1):92-8. doi: 10.1016/j.radonc.2012.02.010, PMID 22405806.

Poplack SP, Park EY, Ferrara KW. Optical breast imaging: a review of physical principles, technologies, and clinical applications. J Breast Imaging. 2023 Sep 1;5(5):520-37. doi: 10.1093/jbi/wbad057.

Yao Z, Luo T, Dong Y, Jia X, Deng Y, Wu G, et al. Virtual elastography ultrasound via generative adversarial network for breast cancer diagnosis. Nat Commun. 2023;14(1):788. doi: 10.1038/s41467-023-36102-1, PMID 36774357.

Jiang G, He Z, Zhou Y, Wei J, Xu Y, Zeng H et al. Multi-scale cascaded networks for the synthesis of a mammogram to decrease intensity distortion and increase model-based perceptual similarity. Med Phys. 2023;50(2):837-53. doi: 10.1002/mp.16007, PMID 36196045.

Jiang G, Wei J, Xu Y, He Z, Zeng H, Wu J et al. Synthesis of mammogram from digital breast tomosynthesis using deep convolutional neural network with gradient guided cGANs. IEEE Trans Med Imaging. 2021;40(8):2080-91. doi: 10.1109/TMI.2021.3071544, PMID 33826513.

Avtanski D, Hadzi-Petrushev N, Josifovska S, Mladenov M, Reddy V. Emerging technologies in adipose tissue research. Adipocyte. 2023 Dec 31;12(1):2248673. doi: 10.1080/21623945.2023.2248673, PMID 37599422.

Oza P, Sharma P, Patel S, Adedoyin F, Bruno A. Image augmentation techniques for mammogram analysis. J Imaging. 2022;8(5). doi: 10.3390/jimaging8050141, PMID 35621905.

Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2(1):36. doi: 10.1186/s41747-018-0068-z, PMID 30426318.

Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer. 2020;11(15):4474-94. doi: 10.7150/jca.44313, PMID 32489466.

Schneider BP, Miller KD. Angiogenesis of breast cancer. J Clin Oncol. 2005;23(8):1782-90. doi: 10.1200/JCO.2005.12.017, PMID 15755986.

Kim SH, Lee HS, Kang BJ, Song BJ, Kim HB, Lee H, et al. Dynamic contrast enhanced MRI perfusion parameters as imaging biomarkers of angiogenesis. PLOS ONE. 2016;11(12):e0168632. doi: 10.1371/journal.pone.0168632, PMID 28036342.

Mori N, Abe H, Mugikura S, Takasawa C, Sato S, Miyashita M, et al. Ultrafast dynamic contrast-enhanced breast MRI: kinetic curve assessment using empirical mathematical model validated with histological microvessel density. Acad Radiol (2019) 26(7):e141–e9. doi: 10.1016/j.acra.2018.08.016

Makhtar M, Yang L, Neagu D, Ridley M. Optimisation of classifier ensemble for predictive toxicology applications Proc 14th Int. Conf. Model Simulation, UKSim 2012. Vol. 2012; 2012. p. 236-41. doi: 10.1109/UKSim.2012.41.

Yang D, Wang Y, Jiao Z. Asymmetry analysis with sparse autoencoder in mammography; 2016. doi: 10.1145/3007669.3007712.

Ribli D, Horváth A, Unger Z, Pollner P, Csabai I. Detecting and classifying lesions in mammograms with Deep Learning. Sci Rep. 2018;8(1):4165. doi: 10.1038/s41598-018-22437-z, PMID 29545529.

Yurdusev AA, Adem K, Hekim M. Detection and classification of microcalcifications in mammograms images using difference filter and Yolov4 deep learning model. Biomed Signal Process Control. 2023;80:104360. doi: 10.1016/j.bspc.2022.104360.

Mota AM, Clarkson MJ, Almeida P, Matela N. Detection of microcalcifications in digital breast tomosynthesis using faster R-CNN and 3D volume rendering. In: Proceedings of the 15th international joint conference on biomedical engineering system and technologies (Bioimaging). Vol. 2; 2022. p. 80-9. doi: 10.5220/0010938800003123.

Li Y, He Z, Ma X, Zeng W, Liu J, Xu W, et al. Architectural distortion detection based on superior–inferior directional context and anatomic prior knowledge in digital breast tomosynthesis. Med Phys. 2022;49(6):3749-68. doi: 10.1002/mp.15631, PMID 35338787.

Li Y, He Z, Pan J, Zeng W, Liu J, Zeng Z, et al. Atypical architectural distortion detection in digital breast tomosynthesis: a computer-aided detection model with adaptive receptive field. Phys Med Biol. 2023;68(4). doi: 10.1088/1361-6560/acaba7, PMID 36595312.

Li Y, He Z, Ma X, Zeng W, Liu J, Xu W, et al. Computer-aided detection for architectural distortion: a comparison of digital breast tomosynthesis and digital mammography. J Med Imaging. 2022;12033:231-8. doi: 10.1117/12.2611287.

Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S. Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep. 2017;7(1):4172. doi: 10.1038/s41598-017-04075-z, PMID 28646155.

Busby D, Grauer R, Pandav K, Khosla A, Jain P, Menon M et al. Applications of artificial intelligence in prostate cancer histopathology. Urol Oncol. 2023 Jan 11. doi: 10.1016/j.urolonc.2022.12.002, PMID 36639335.

Tran J, Thaper A, Lopetegui-Lia N, Ali A. Locoregional recurrence in triple negative breast cancer: past, present, and future. Expert Rev Anticancer Ther. 2023 Oct 3(just-accepted);23(10):1085-93. doi: 10.1080/14737140.2023.2262760, PMID 37750222.

Fatima GN, Fatma H, Saraf SK. Vaccines in breast cancer: challenges and breakthroughs. Diagnostics (Basel). 2023 Jun 26;13(13):2175. doi: 10.3390/diagnostics13132175, PMID 37443570.

Issa-Nummer Y, Darb-Esfahani S, Loibl S, Kunz G, Nekljudova V, Schrader I, et al. Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer–a substudy of the neoadjuvant GeparQuinto trial. PLOS ONE. 2013;8(12):e79775. doi: 10.1371/journal.pone.0079775, PMID 24312450.

Ono M, Tsuda H, Shimizu C, Yamamoto S, Shibata T, Yamamoto H, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132(3):793-805. doi: 10.1007/s10549-011-1554-7, PMID 21562709.

Savas P, Teo ZL, Lefevre C, Flensburg C, Caramia F, Alsop K, et al. The subclonal architecture of metastatic breast cancer: results from a prospective community-based rapid autopsy program ”Cascade”. PLOS Med. 2016;13(12):e1002204. doi: 10.1371/journal.pmed.1002204, PMID 28027312.

Maley CC, Koelble K, Natrajan R, Aktipis A, Yuan Y. An ecological measure of immune-cancer colocalization as a prognostic factor for breast cancer. Breast Cancer Res. 2015;17(1):131. doi: 10.1186/s13058-015-0638-4, PMID 26395345.

Peck RW. The right dose for every patient: a key step for precision medicine. Nat Rev Drug Discov. 2016;15(3):145-6. doi: 10.1038/nrd.2015.22, PMID 26669674.

Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. doi: 10.1038/ncomms5006, PMID 24892406.

Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-62. doi: 10.1038/nrclinonc.2017.141, PMID 28975929.

Polevoy GG, Kumar DS, Daripelli S, Prasanna M. Flash therapy for cancer: A potentially new radiotherapy methodology. Cureus. Oct 13, 2023;15(10):e46928. doi: 10.7759/cureus.46928.

Park H, Lim Y, Ko ES, Cho HH, Lee JE, Han BK et al. Radiomics signature on magnetic resonance imaging: association with disease-free survival in patients with invasive breast cancer. Clin Cancer Res. 2018;24(19):4705-14. doi: 10.1158/1078-0432.CCR-17-3783, PMID 29914892.

Lehman CD, Wellman RD, Buist DS, Kerlikowske K, Tosteson AN, Miglioretti DL, et al. Diagnostic accuracy of digital screening mammography with and without computer-aided detection. JAMA Intern Med. 2015;175(11):1828-37. doi: 10.1001/jamainternmed.2015.5231, PMID 26414882.

Giger ML, Karssemeijer N, Schnabel JA. Breast image analysis for risk assessment, detection, diagnosis, and treatment of cancer. Annu Rev Biomed Eng. 2013;15:327-57. doi: 10.1146/annurev-bioeng-071812-152416, PMID 23683087.

Antropova N, Huynh BQ, Giger ML. A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets. Med Phys. 2017;44(10):5162-71. doi: 10.1002/mp.12453, PMID 28681390.

Conant EF, Toledano AY, Periaswamy S, Fotin SV, Go J, Boatsman JE et al. Improving Accuracy and Efficiency with Concurrent Use of Artificial Intelligence for Digital Breast Tomosynthesis. Radiol Artif Intell. 2019;1(4):e180096. doi: 10.1148/ryai.2019180096, PMID 32076660.

Maghsoudi OH, Gastounioti A, Scott C, Pantalone L, Wu F-F, Cohen EA et al. Deep-LIBRA: an artificialintelligence method for robust quantification of breast density with independent.

Published

05-01-2024

How to Cite

Mohan Jha, D. A., D. A. Prasada Kumar Mahapatra, D. J. Abraham, and D. S. Ghosh. “Artificial Intelligence - A Primer for Diagnosis and Interpretation of Breast Cancer”. International Journal of Trends in OncoScience, vol. 2, no. 1, Jan. 2024, pp. 27-36, doi:10.22376/ijtos.2024.2.1.27-36.

Issue

Section

Review Articles